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Abstract 

The coincidence site lattice (CSL) theory, usually 
used to find models for grain boundaries, is shown 
to give a quantitative and accurate description of 
crystal structures. The CSL model with ~ = 3 gives 
building blocks which are defined and symbolized in 
terms of 2, 3, 4 or 5 integral numbers, i.e. (K, L), 
(K,L,P), (K,L,P,Q) or (K,L,P,Q,S). The 
assembly rule of building blocks in a c.c.p.-related 
crystal is analyzed in terms of 17 space groups. The 
relationship between a group and its subgroup is 
discussed. Two formulae which can calculate the 
coordinates of the atoms of a building block and a 
crystal structure are given. The following structure 
types have been analyzed: SiF4, a -Mn,  y-brass, 
Fe3W3C, AI~oV, pyrochlore, zunyite, Mg44Rh7, Na6TI, 
Cu4Cd3, Ge38PsI8 and LiTVN4. 

1. Introduction 

The empirical use of building blocks of atoms has 
been very fruitful in the description of complex crystal 
structures. The building blocks were almost always 
found to be units of simpler structures. Complex 
structures were described by letting the simpler blocks 
repeat by the classical operations of translation, 
reflection and rotation (Andersson, 1981; Andersson 
& Hyde, 1982). 

By strictly describing and defining building blocks 
according to the symmetry of a crystal and repeating 
it with twin, rotation or reflection operations, we have 
arrived at a general and quantitative method for cal- 
culating atomic positions of even the most complex 
cubic inorganic structures. The mathematical concept 
used here is the same as that used in the study of 
grain boundaries and their coincidence site lattices 
(CSL), viz. matrix algebra. 

It can be shown that for a rotation matrix of a 
cubic lattice 

1 [a~ a~2 al3~ 
R=---~a21 a22 a23J 

\a31 a32 a331 

then Vc = NV~ for p.c., b.c.c, and f.c.c. (Grimmer, 
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Bollmann & Warrington, 1974) where VI is the 
volume for a standard cubic unit and Vc the volume 
for a structure unit derived from the CSL. They also 
showed that N = ,~ for these three cubic cases, with 
,~ = 3, 5, 7 , . . .  (,~ = 1 is simple translation), where ,~ 
is the CSL parameter. A simplified method to find 
such a parameter has been derived by one of us (Yang, 
1980, 1982). The smaller is ,~, the larger is the coin- 
cidence coefficient and the lower is the grain- 
boundary energy in most cases. 

The CSL model for description of the structure is 
very closely related to unit-cell twinning (Andersson 
& Hyde, 1974) and we shall discuss it in § 4. 

2. Building blocks 

Twins with {111} composition lattice plane have the 
smallest ,~ = 3. Such twinning is very common in 
metals, alloys, inorganic compounds and minerals. A 
cubic crystal includes at least three twofold axes in 
the (100) directions and four threefold axes in the 
(111) directions. If twinning occurs in one of the (111) 
directions, it will appear in the other three directions, 
therefore both a matrix and its twins have a Td sym- 
metry; we then call the matrix a Td polyhedron. 
Consequently the Td polyhedron and its twins are 
called building blocks. 

2.1. Symbol to describe a building block 

We can choose a rhombohedral unit cell with a = 
Kd [d is the edge of a tetrahedron and equal to 
(3/2)~/2d~] and a = 6 0  ° from an f.c.c, lattice, as 
shown in Fig. 1 with a = 2d. A Td polyhedron can 
be obtained by cutting the rhombohedron with two 
planes perpendicular to its long diagonal; the spacing 
between these planes is Kd~.  However, there are 
( 2 K + l )  ways to cut it and ( 2 K + I )  different Td 
polyhedra can be obtained. As shown in Fig. 1, for 
example, we can cut the rhombohedral unit cell at 
layers 0 and 2, at layers 1 and 3, 2 and 4, 3 and 5, 4 
and 6, and denote the resulting polyhedra by symbols 
(2, 0), (2, 1), (2, 2), (2, 3), (2,4). Generally, we use 
(K, L) to indicate a Td polyhedron, where K means 
that the polyhedron has height Kdl~ in the (111) 
direction, and L means that the polyhedron is 
obtained by cutting the rhombohedral unit cell at the 
Lth and the (L+  K)th layers. Then we see that (K, L1) 
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is equal to (K, L2) but they have opposite orientations 
for L ~ = K - i ,  L 2 = K + i ,  i = 0 , 1 , 2 , . . . , K .  For 
example, (2,1) as well as (2,3) are truncated 
tetrahedra; however, a hexagon of (2, 1) is in the 
[111] direction, and that of (2, 3) is in - [111] .  Now, 
one can easily see that (1, 0) is a tetrahedron, (1, 1) 
an octahedron, (2, 0) the tetrahedron with edge = 2d, 
(2, 2) the octahedron with edge = 2d etc. 

There exist twins with composition plane {111} in 
a complicated c.c.p.-related crystal. One can use 
(K, L, P) to represent a (K, L) polyhedron with four 
twins of P atomic layers parallel to the.{111} lattice 
planes. We use (K, L, P, Q) or (K, L, P, Q, S) to 
denote a (K, L) polyhedron with second-order or 
third-order twins, where Q and S denote the numbers 
of the layers of the twins. Models of the building 
blocks (1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (2, 0, 1), (3, 0), 
(1 ,0 ,1 ,1 ,1) ,  (1,0,1) ,  (1,2,1) ,  (1,1,1),  (1 ,1 ,1 ,1) ,  
(1 ,1 ,1 ,1 ,1) ,  (3,0,1),  (2,1,2) ,  (4,1,1),  (4,5,1) ,  
(4, 3, 1) are shown in Figs. 2(a)-(g) .  

2.2. Calculating the atomic positions of a building block 

2.2.1. The formula for a ( KL) polyhedron. Let axes 
al, a2, a3 of a cubic unit cell be transformed into dl, 
d2, I] 3 of a rhomb0hedral unit cell. Then 

d~ = (3/2n)(a2 +a3) (2.2.1a) 

d2 = (3/2n)(a  3 + a,) (2.2.1 b) 

d3 = (3/2n)(a~ + a2) (2.2.1c) 

where n is the number of atomic layers parallel to 
(111) from [000] to [111]. 

Consequently, we obtain 

a = n(21/E)d/3 where d = [d,I. (2.2.2) 

This formula is a fundamental one in c.c.p.-related 
structures, and it was empirically derived earlier 
(Andersson, 1980). 

In matrix notation, (2.2.1a) to (2.2.1c) can be com- 
bined as 

Let m~d~ + m2d 2+ m3d 3 = xal +ya2+  za3 where m~, 

/, 5 6 

3 

(d) 3 (! ' 
as 0 11|= q 
d3 1 0]ka3,] 

Fig. 1. Construction of T a polyhedra. 

m2, m 3 are integers; then 

( i )  ( !  1 l~{ml~  =~3 0 l}|m:/. 
10/\m3] 

This formula can be used to calculate all the coordin- 
ates of a (K, L) polyhedron by choosing suitable 
integers m~, m2, m3. But, in this case, the centre of 
the (K, L) polyhedron does not coincide with the 
origin of the cubic unit cell. It would be better to put 
the center of the (K, L) polyhedron at the origin of 
the cubic unit cell. Translate the (K, L) polyhedron 
a distance (K+L)(3 /4)d(2 /3)  ~/2 along the - [111]  
direction, then we get 

where 

= 0 2 m2 (2.2.3a) 
,~n 2 0 m3 

/1'14 

m 4 = K + L  

0_< mi<- K i =  1,2,3 

L_< ~ll -~- rn2..I- ~,13~__ m4.  

A Friauf polyhedron is different from a truncated 
tetrahedron. For a Friauf polyhedron, there is no 
atom at the center of hexagons, but there are atoms 
inside it and out from the hexagons. Therefore, m, 
(i = 1, 2, 3) have to satisfy more conditions to exclude 
the atoms at the center of the hexagons of a Friauf 
polyhedron, namely 

odd: mi not all odd 
m~ + m2+ m s = I.even: mi all even. 

Thus 111, 311, 511, 331 , . . . a r e  forbidden number 
groups by the first condition and 013, 123, . . .  violate 
the second condition, while 002,024, . . .  are permitted 
number groups. 

However, in order to include the atomic coordin- 
ates at the center of a Friauf polyhedron and outside 
the hexagons of a Friauf polyhedron, we have to 
choose mi(i= 1, 2, 3 )=  odd first, and then calculate 
x, y, z from (2.2.3a); then 

3 3 3 )  
( x ~ y ~ z ~ ) = ( x y z ) +  4-n 4n 4n (2.2.3b) 

(33 ) 
( x ~ y ~ z ~ ) = ( x y z ) -  4n4n3n  (2.2.3 c) 

are coordinates of the center of a Friauf polyhedron 
and outside the hexagons of a Friauf polyhedron. 

All these conditions are obtained by an inductive 
method. 

2.2.2. The formula for a twin part of a building block. 
Let a cubic crystal be reflected by the (111) lattice 
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plane through the origin; then 

= - 1 2  1 2 y 

3 2 2 1 z 

(2.2.4) 

2. The space groups P23, I23, Pn3, P4232, PT~3n, 
pTGm, I7~3m and Pn3 m contain two building blocks, 

t tt__~ The space which are located around (000) and \222/- 
groups P23, 123 and I43 m have the same XoyoZo and 
U~, but their building blocks differ. Two building 

where xyz are the coordinates of the matrix, and X Y Z  
are those of the twin (Grimmer, Bollmann & Warring- 
ton, 1974). 

If the mirror plane (111) is translated (K + L ) x  
(1/4)(2/3)~/2d along the [111] direction, then 

= g ~ m2 (2.2.5) 

m4 

where 
m 4 = K + L  

0 < - mi(i = 1, 2, 3) < - K 

m4 -- P <- m~ + m2 + m3 <- m4 - 1. 

If P = 1 then m~ + mE + m3 = m4-1 .  Usually, P = 1. 
For a Friauf polyhedron, m~(i = 1, 2, 3) in (2.2.5) 

have to satisfy more conditions which are exactly the 
same as for (2.2.3a). 

The formula for a crystal is as follows: 

X 3U 0 2 2 i m~ 
m2 

= 2 ;  0 2 + yo (2.2.6) 
2 0 m3 z 

m4 

for a (K, L) polyhedron, and 

x U ~ ~ 5 m '  
w -  8 2 m2 -t- 

2 8 \m3J zo 
m4 

(2.2.7) 

for the twin part of the building block, where xoYoZo 
are coordinates of the center of a building block in 
a crystal and U~ is a symmetry matrix (i = 1, 2, 3, 4), 
with 

U~= 1 , U2 = i , 

0 0 

(i ° (i°i) u3 0 , u 4 =  0 . 

i 1 

Ui and xoYoZo depend on the space group, and are 
lliven in Table 1. (xoYoZo) is the complex with 23 or 
43m symmetry. 

We can conclude from Table 1 that: 
1. All of the space groups in Table 1 include 23 or 

43m symmetry. 

blocks of P23 are independent and different from 
each other; however, those of I23 are the same. The 
xoYoZo and Ui of I23 and I43 m look exactly the same, 
but 123 is one of the subgroups of I43m. The building 
blocks of I43m have higher symmetry than that of 
I23. A similar relationship exists between space 
groups Pn3 and Pn3m. 

3. Fm3, F432 and Fm3m consist of eight building 
blocks. Fro3 is a subgroup of Fm3m although they 
have the same Ui and xoYoZo. 

4. The space groups Fd3, F4t32, F7~3c and Fd3m 
consist of 16 building blocks in two different types. 
Fd3 and Fd3m have the same U~ and XoyoZo, but 
Fd3 is a subgroup of Fd3m. 

5. The space groups F23 and FT13m consist of 16 
building blocks in four different types; F23 is a sub- 
group of FT~3m. 

6. A group and its subgroup can consist of the 
same building blocks. In that case, the supergroup 
probably consists of homogeneous atoms and the 
subgroup of heterogeneotis atoms, or a small atomic 
displacement occurs in the subgroup. All the group- 
subgroup relationships have been given in Fig. 3. 

7. The space groups in Table 1 are divided into 
two types. Group type II can accommodate all of the 
building blocks; however, group type I can accom- 
modate only building blocks which have special 
positions such as x00, xxO, xxx, xxz, and cannot 
accommodate the coordinates xyz. If group type I 
includes general positions xyz, they must have other 
positions xzy at the same time, which is not given in 
Table 2. 

2.3. The coordinates of a building block 

All of the coordinates of a building block are given 
in Table 2. Since n in (2.2.3a, b,c) and (2.2.5) depends 
on the crystal structures, we give only 4nx, 4ny, 4nz 
and 4nX, 4nY, 4nZ (tlt2t3), which are independent 
of the crystal structure. The coordinates in Table 2 
have to be divided by 4n when the coordinates of the 
atoms in a crystal are calculated. Table 2 only gives 
the coordinates of building blocks which appear very 
often in a crystal. For simplicity, we assume that a 
building block has the following symmetry elements: 

xyz yzx zxy xzy zyx yxz 

xy~ y ~  zgp x~y zy-~ y ~  

gy~. pz~ ~.xp xzy zyx px~. 

g~z yz-x ~.~y g~.y ~.y-x fi~z. 

Only independent coordinates are given in Table 2. 
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Space  
group 

P23 

F23 

123 

Pn3 

Fm3 

Fd3 

P4~32 

F432 

F4~32 

P43 n 

F43 c 

P43 m 

F#,3 m 

l].3m 

Pn3m 

Fm3m 

Fd3m 

Space  
group  
type  

I 

I 

I 

I 

N u m b e r  o f  
c o m p l e x  

sets 

2 

4 

1 

I 

1 

2 

1 

1 

2 

1 

2 

2 

4 

1 

1 

I 

2 

Table 1. U~ and XoYoZo for 17 space groups 

C o m p l e x  1 C o m p l e x  2 
matrix matrix 

U t U, 

444 444 444 
U, U, 

ooo i{{ 
U, 

ooo {{! 

u, U 2 
i~ ,,,111 |i~ 4],l i 111 ill ill }ii 

444 444 444 444 

U, U2 
l ,  111 }~1 1 ! I  11! I ] 0o0 ol{ {01½½0 , , I  ,,,i~ ,,,l'1 , , ,  ~½ {00 0{0 0o~ . . . . . . . . .  d, 

U, U2 Ut U2 

u, U 3 
I I  i l l  H i  ,11 ~ii 111 +!i 111 ,A ~44 4 4 4  4 4 4  4 4 4  4 4 4  4 4 4  

u, U 3 
I I  !11 d, ill ioo o½o ~ .t  ~,, 1. 444 4~4 +4~ 444 ~44 

u, U~ u, u~ 

U, U+ 
ooo o½½ IN II 0 zz½'i ~oo 0~0 00½ 4+4iiI ...!11 111 .~+~11 +..111 44,1ii !ii ill 4~4 4~4 444 

U, U+ U, U~ 
ooo 

u i u, 
ooo o{{ {o~ {½o t,t !11 1,1 11, 

444 { 44  444 444 

U, U, 

Ut Ut 
ooo {{I 
U, U~ 

i~i 11~ I11 I i ,iil! ,i 

u, U 2 

444  ~4~  ~4  444 444  

U, U: U, U~ 

C o m p l e x  3 C o m p l e x  4 
matrix matrix 

{+{ {00 o½o ~ ,,,~1 t,q ,,,il' Ill 
U, U t 

444 444 ii4 444 

U, U~ 

Remarks 

Origin at 23 

Origin at 23 

Origin at 43m 

The group type I does not have such high symmetry. 
Its symmetry elements are only the left half of  the 
group type II. There is no difference between the two 
types of  space groups for the positions such as x00, 
xxO, xxx, xxz. It can be seen that most of  the building 
blocks in Table 2 satisfy this except the building 
blocks (2, 2, 1), (4, 3, 1), (4, 5, 1), (4, 7 ,1)  and 
(2, 0, 1, i ,  1). Coordinates such as xyz of a building 
block have to be divided into xyz and xzy in group 
type I as mentioned in § 2.2.2. 

The coordinates of  the building blocks (1, 1, 1, 1), 
(1, 0, 1, 1) (1, 0, 1, 1, 1) having higher-order twins 
cannot be calculated by (2.2.3a) and (2.2.5) and we 
have to use other formulae which are much more 
complicated than (2.2.3a) and (2.2.5). This is not 
described in this paper. 

The coordinates of  the second-order twin of  the 
building block (1, 0, 1, 1) would be (1/3 1/3 31/3), 
according to the rigorous second-order twinning for- 
mula if the factor 1/4n is omitted. The coordinates 
( i / 3  i / 3  31/3) can be obtained from (1/3 1/3 31/3) 
in terms of  symmetry operations. These two positions 
of  ( i / 3  i / 3  31/3) and (1/3 1/3 31/3) are very close 
together. The distance between them is 0.9428 which 
is much shorter than the edge (8.485) o fa  tetrahedron, 
namely 11% of a tetrahedron edge. The average of  
the coordinates of these two positions is (0 0 31/3) 

which is very close to the coordinates (0 0 31.045/3) 
of the vertex of  the capped triangle (Nyman & 
Andersson, 1979) on the edge of  the central tetrahe- 
dron of  a stella quadrangula. 

In common with the building block (1, 0, 1, 1), the 
coordinates (80 /980 /9  13/9) of  a building block 
(1, 0, 1, 1, 1), which are very close to the coordinates 
(80.091/9 80.091/9 13.045/9) of  the vertex of  the cap- 
ped triangle on the edge of  the outer tetrahedron of 
a stella quadran_g_ula, are the average o f  the coordin- 
ates (77/9 83/9 13/9) and (83/9 77/9 13/9) which are 
calculated by the formula of  the third-order twin. 
Similarly, the coordinates ( 9 / 3 9 / 3 4 0 / 3 )  are the 
average of  (8/3 10/3 40/3) and (10/3 8/3 40/3). 
Stereoview pictures of  the building blocks 
(1, 0, 1, 1, 1) are given in Figs. 4(a) and (b). It can 
be seen that some pairs of  atoms of the second- or 
third-order twins are so close together that they have 
to be replaced by one atom at the middle of  these 
two atoms. Now, we can easily realize that, in fact, 
a building block (1, 0, 1) is a stella quadrangula; 
(1, 0, 1, 1) the triangular capping of  a stella quad- 
rangula; (1, 0, 1, 1, 1) a double triangular capping, 
and (1, 1, 1, 1) an octahedral capping pyrochlore unit 
(Andersson, 1978). All of  the twins of  building blocks 
in Table 2 share atoms in the (111), (111), (111), 
(111) lattice planes with a central Td polyhedron. Of 
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I~  I I I  I I 
' L , ~ !  

: :'~¢~, ,i~ ~: .~:i ~''. '_ 

I I I I ~ I I ~ ]  I I I I I I  I I I I I ~ I  ~ I I I~  ~ I I I I I I  I 
~II~]~i ~ J I I III I I I I I I I I ~I I I r [ ~ I I I I I ~ I IiI~ ~ 

• . ~ , .  ~ . ,  ~ : ~  . . . .  L .  • - ! . ~ ' ~ - . . L  ~ .  , . . . . .  ~ ~ .  " . ; ~ .  - . ~ "  

(c) 

Fig. 2. (a)-(g) Models of building blocks used to describe c.c.p.-related structures. 

[ To face p. 4 
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(d) 

(e) 

Fig. 2 (cont.) (d) (e) 
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(f) 

i iii~iiiill ' ii 

(g) 

Fig. 2 (cont.) (f) (g) 
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Fig. 5. The structure of SiF4. 
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Building 
block 

mlm2m3(I 0 0 0 
(0,01 t l t 2 t  3 0 0 0 

(I ,01 mlm2m 3 0 0 0  

(1,0,11 mlmzm 3 000 0 0  O* 
t l t 2 t  3 3 ~" 3" 5 5 5 

(1,11 mlmlm ~ I I 0 
t l* .2t  3 006 

( I , 1 , 1 )  mlm2m 3 } I 0 0 0 I 
i1213 0 0 6 8 8 2 

(1,11 mlm2m ] I I I 
t l t 2 t  3 3 3 3  

(1,~t,1) mlm2m 3 I I I I I 0 

t l t 2 t  3 3 3 3 5 5 II 

{1,01 mlm2m 3 0 0 0  I I 0 
I t t t 2 t  3 ~ ~" ~" 0 0 6  

(2,0,1) mlm2m 3 0 0 0 I I 0 0 0 I:': 
t l t 2 t  3 ~" ~ ~" 0 0  6 8 8 2 

mlm2m 3 1 1 1  0 0 2  
I12,11 t l t 2 t  3 3 3 3 3 3 

(2,1,11 mlrn2m3 ! 1 t I o o 2 11 o:: o o 2: 
t l t213 333 3 3 §  5511  IIIIF 

(2.1,21 mlm2m 3 1 I I 0 0 2 I I O' 0 0 2' 0 0" 

t l t 2 t  3 3 3 3  3 3 §  5 5  II l l l l l "  1313 

(2,21 mlm2m 3 I I I 2 1 I 2 2  0 

t l t 2 t  3 0 0 0  0 6 6  0 0 1 2  

(2,2,1)  mlm2m3 I I 1 3 I 1 2 2 0  1 1 1 ' :  10": 

t l t 2 t  3 0 0 0 0 6 6 0 0 12 8 8 8 814 

(2,~) mlm2m 3 1 I 1 2 2 1  

t l t 2 t  3 3 3 3 3 3  9 

mlmlm 3 1 1 1  2 2 1  2 2  o 1 1 2  
(2,3,1) t l t 2 t 3  i~ ~ ~- 3 3 9 5 517 11115 

(2,t~1 mlm2m 3 2 2 1 2 2 l 
tlt2t ] 6 6 6 00 6 

mlmzm 3 2 2 2  2 2  1 2 2  I*  

(2.~,11 t l t 2 t  ~ 6 6 6 0 0  6 8 8  14 

mlmlm ~ 0 0  0 0 0 2  I 1 I 

(3,0) t l t 2 t  3 § ~" ~ 3 3  ~ 3 3 3  

mtm2m3 0 0 0 0 0 2  11  I t I 0 " ] 0 0  2 ~ 
(3,0,11 t~t,~t~ § 9 ~ 3 3 ~J 3 3 3 5 5 11 1111 1" 

I 

Table 2. The coordinates of building blocks 

m 1 m2m 3 end coordinates (t~ t2t3) (t l  =4nx or 4nX. t 2 =4ny  or 4n~  t:z =4nz or 4nZ) 
Building 
block 

| l  
mlm2m~ :4.1)F 
t l t 2 t  3 

14,1,11F mlm2m3 
t l t 2 t  3 

14,~1F mlm2m3 
t11213 

14,3,1)F mlm2m3 
• t112t3 

[4,5) F mlm2m3 
t11213 

. .  

[4.$,11F mlm2m3 
t l t 2 t  3 , ,  

mlm2m 3 
.(~,7}F 111213 

(4,7,11F ~lm2m3 
t l t 2 t  3 . .  

(5,O)F ~lmlm3 
t l t 2 t  3 

, ,  

(5 ,0.1)F ~1m2m3 
t l t 2 t  3 

. • 

( I , 0 ,1 ,1 )  ~lm2m~ 
i t2 t  3 

I L ( I , I , I , I  I ~lm2m3 
it213 

(2 ,0 ,1 ,1)  mlm2m3 
11213 

mlm2m 3 
(2,G,1,T, 11 t l t2 t3  

JI 
(1 ,0 ,1 ,1 ,1)  mlm2m~ 

t11213 
I 

(2~1¢ alm2m3 
t l t l t  ) 

I 1 "  

(2,3)F ~lm2m3 
t t t l t  3 

(2,1,2) F mlm2m3 
t l t l t ~  

at m,2m 3 
(3.3,1) t l t 2 t 3  

m , m ) r n l  and coordinates ( t l t2t3) (r 1 =4nx or 4nX. t2=4ny  or 4nY. t.~=4nz or 4nZ) 

004 003 221 I I + I ~ 

9 9 1 5  331-5 3 3 9  0 0 0 ~ 

0 0 4  0 0 3  2 2 1  I I+ 1 1 ~ 1 1 1  I I 3:':2 2 0:: 0 0 4 "  

9 9 I~ 3 3 I-5 3 3 9 0 0 0 g ~" ~ 101010 12120 5 517 7177 

0 0 4  1 0  t~ 2 2 3  2 2 2  I 11  3 3 1  

3323 391-5 9 9 3  333 ~;I;~ 0 0 1 2  

004 104 223 222 1111 331 02~+:'222~ 331 ½ZI2 m 

332-i  3 9 1 5  9 9 3  3 3 3  ~ 6 6  0 0 1 2 2 3 1 1 i -  1 1 1 1 1 6 6 1 8 1 1 1  1818 ~ 

1 3 3  3 3 3  2 2 2  2 2  z' t 4 1 / 4 3 2  

1 2 0 0  6 6 6  3 3 3  9 9 7  321 3 9 1 5  
, ,. 

1 3 3  3 3 3  222 22G q 1 4 3 2  4z40 2 2 4  3 3 3  3 3 1  

1 2 0 0  6 6 6  3 3 3  9 9 3  3 2 1 : 3  915 5 5 2 9 1 7 1 7 5  121212101012 

1 1 1  3 3 3  2 2 4  4 4 2  4 3 

000 6 6 6  3 3 9  3 3 1 5  915 

1 1 1  3 3 3  2 2 4  zl zl 2 4 3 4 4 2  

0 0 D 666 3 3 9  3 3 1 5  915 11123 

0 0 0 004 003 2 2 1  11 I I ~ 
- - ~ 
151515 9 9 I-5 3 3 1 ~  ,33  9 0 0 g g g 

0 0 0  0 0 4  0 0 3  21  11  11 ~" 1 1 1  1 1 3 " 2 2 0  0 0 4  

1~151~ 991"~ 3 3 1 ~  3 9  O0 g g ~ "  10101012120 5 5 1 7  17177 

0 0 0  0 0 0  0 0 0  
- . . 

3 3 3  5 S 5 0 0 3 1 / 3  

I I o o 0 1 o o I 1 0  
161646 9 CO 

006 882 i~I "~$ 
,~ ,.: ~ ~ ~.: 

o o o 11o 0oi o I DIg 

g ~ ' g  006 8 8 2  61646 9 9 ~  
3 3  3 3 3  

0 O0 I I 0 0 0 1  

! ~ ~ ~" 0 0 6 8 8 2 21~ 01016 i 8 814 16166 141414 

0 0 0  0 0 0  0 0  O* 0 (~ *** 
L1808013 ~ s s s  on 3 ~ 

111 111 0 0 2  

0 0 0  6 6 6  3 3 §  

1 1 1  I l l  2 2 1  

0 o o  ~ g g  3 3 9  

1 1 1 I I q 0 0 2  ~ 0 0 2 ' 0 0 1  ~ 

0 0 0 ' 6 6 6  3 3 ~  1111T 3132 
/ 

1 2 2  0 3 3  1 1 3 1 2 1 2  11 

6 0 0  1 8 0 0  1 2 6 0  ~6 66 ~ ' ~ ' ~ ' 1  

course, the twins of a building_block can share atoms 
in the (111), ( i l l ) ,  (111), (111) lattice planes with a 
Ta polyhedron as well. We use (K, L, P, Q, S) to 
denote the former, - ( K ,  L, P, Q, S) the latter. The 
coordinates of the building block - ( K ,  L, P, Q, S)are  
just the negative of the (K, L, P, Q, S) coordinates so 

192 

96 Fd 

48 

FO 3m Fm3m 

P23 

Fig. 3. Group-subgroup relationship among 17 space groups. 

that we do not show them in Table 2. The building 
block (K, L, P, (), S) means that the twinning plane 
of the twin P is the (111) lattice plane and that of 
the twin Q is - (111) ,  so that the orientation of the 
twin Q is the same as that of the central Td poly- 
hedron. 

Those with the letter F consist of Friauf polyhedra. 
The symbol * means first-order twin; ** second; 
• ** third. 111 + and 111- means that t, t2t3 
(4nx',, 4ny',, 4nz', or 4nx'2, 4ny'2, 4nz'2) are calculated 
by (2.2.3b) and (2.2.3c) respectively. 

3. The description of a c.c.p.-related structure in terms 
of a building block 

3.1. SiF4 

SiF4 is cubic, space group I43m, a = 5.41/~. It was 
shown in Table 1 that a crystal of I7~3m includes two 
building blocks of the same type; one is around (000), 
the other around ¢1,1~ 



6 COINCIDENCE SITE LATTICES 

Atomic  
pos i t ion  

2 S i i n ( a )  

8 F in (a) 

Exper" menta l  
coord ina te s  

x y z 

0 0 0 

0.17 0.17 0-17 

Table 3. SiF4, cubic, a = 5.41/~, space group I43m 

Calcu la ted  Bui ld ing  
coord ina tes  Ca lcu la t ed  b lock  

x y z t t t 2 t s m t m 2 m s symbol  

-5  - 5  - 5  0 0 0* - ( I , 0 , 1 )  
0.1875 0-1875 0"1875 

3 3 3 0 0 0 - (1,0,1) 

Table 4. a-Mn, cubic, a = 8.89 ,~, space group I43m 

E x p e r i m e n t a l  

A t o m i c  c o o r d i n a t e s  

p o s i t i o n  x y z 

2 Mn(i)  in 2(a) 0 0 0 

8 Mn(2) in 8(c) 0-31787 0.31787 0-31787 

24 Mn(3) in 24(g) t 0-35706 0-35706 0-03457 

24 Mn(4) in 24(g)2 0.08958 0.08958 0.28194 

Calcu l a t ed  
coord ina tes  Ca lcu la t ed  

X y g l I 12 13 /TI I m 2 m 3 

0 0 0 0 0 0 I I 1 

0-31250 0.31250 0.31250 6 6 6 i I 1 

0.34375 0.34375 0-03125 II II 1 0 0 2* 
13 T3 7 0 0 1" 

0-09375 0"09375 0'28125 3 3 9 0 0 2 

n U Xo Yo Zo 

4 u, ~ ' !  
4 U~ 0 0 0 

ad(A) 

0.164 

Bui ld ing  
b lock  

symbol  n U Xo Yo z0 Ad (/~) 

- (2 ,  1,2)F 8 U t 0 0 0 0.000 

- ( 2 , 1 , 2 ) F  8 Ut ~ ~ ~ 0.083 
- (2 ,  1,2)F 8 U, 0 0 0 0.170 
-(2,1,2)F 8 u, t ~ 
- ( 2 , 1 , 2 ) F  8 U~ 0 0 0 0.053 

SiF4 consists of two - (1 ,  0, 1) building blocks as 
shown in Table 3. The Si atom is located at the center 
of the central tetrahedron of the - (1 ,  0, 1) building 
block forming a strong Si-F bond, bringing the F 
atoms closer together so that the edge of a central 
tetrahedron is shorter than that of the outer ones. The 
edge of a central tetrahedron is 2-601/~, and that of 
the outer ones is 2.969 A. The building block around 

r!!!'~ i.e. the (000) shares an atom with that around ~222,, 
atom at the vertex of an outer tetrahedron of - (1 ,  0, 1) 
at (000) belongs to the central tetrahedron of 
- (1 ,  0, 1) at ~.2 2 21-(1-1-15 The deviation of the calculated 
atomic positions from the experimentally determined 
positions is 0.164,~. The average F-F distance is 
2.869 A. The average percentage of the atomic devi- 

(a) 

( b )  

Fig. 4. (a) Stereoview of building block (1,0, 1,1, 1). (b) 
Stereoview of building block in y-brass. 

ation (APAD), Ad/d ,  is 5.7. The structure is shown 
in Fig. 5. 

3.2. a - M n  

a - M n  (Oberteuffer & Ibers, 1970) is cubic, a = 
8.89/~, space group I713m. It can be seen from Table 
4 that the building blocks located at (000) and (½½~) 
are - (2 ,  1, 2). They each share three atoms, whose 
coordinates are (0.08958 0.08958 0.28194), (0.08959 
0.28194 0.08958) and (0.28194 0.08958 0.08958). The 
deviation of the positions 8(c), 24(g)1, 24(g)2 from 
the experimental positions are 0.083, 0.170 and 
0.053A respectively. The average interatomic dis- 
tance of Mn is 2-3573 A. The APAD of a-Mn is 4.4. 
This description of a-Mn in terms of a - (2 ,  1, 2) 
building block is quite accurate and is the same as 
used by Samson (1964). 

3.3. y-Brass 

y-Brass (Brandon, Brizard, Chieh, McMillan & 
Pearson, 1974) is cubic, a =8.878 ~ ,  space group 
I43m. Bradley & Jones (1933) have described y-brass 
in terms of clusters, each containing 26 atoms. Nyman 
& Andersson (1979) have described it as doubly 
triangle-capped stella quadrangula. From Table 5, one 
can find that y-brass consists of two building blocks 
- (1 ,  0, 1, 1, 1) located around (000) and tl 1 i~ ~ j .  In fact, 
three different descriptions lead to the same result. 
However, it seems that the method in terms of the 
building block - (1 ,  0, 1, 1, 1) has more relationships 
with other structures and building blocks and it is 
physically more meaningful. The APAD of y-brass 
is 4.2. A model of the structure is shown in Nyman 
& Andersson's (1979) paper, using the same building 
block unit (1, 0, 1, 1, 1). 

3.4. Fe3W3C 

Fe3W3 C (Bojarski & Leciejewicz, 1967) is cubic, 
a = 11.087 A, space group Fd3m. The crystal of this 



A t o m i c  
p o s i t i o n  

IT 8(c) (xxx) 
OT 8(c) (xxx) 
OH 12(e) (x00) 
CO 24(g) (xxz) 

A t o m i c  
p o s i t i o n  

16 Fe(i)  in (d)  

32 Fe(2) in (e) 

48 W in ( f )  

16C in (c) 

QI-BIN YANG AND STEN ANDERSSON 

Table 5. y-Brass (CusZn8), cubic, a = 8.878 A, space group I7~3m 

E x p e r i m e n t a l  C a l c u l a t e d  Bu i ld ing  
c o o r d i n a t e s  c o o r d i n a t e s  C a l c u l a t e d  b l o c k  

x y z x y z t~ t 2 t 3 m t m 2 m 3 s y m b o l  n 
0.1089 0.1089 0.1089 0.1071 0.1071 0.1071 3 3 3 0 0 0 - ( 1 ,  0, 1, 1, 1) 7 

-0.1720 -0-1720 -0.1720 -0.1786 -0.1786 -0.1786 5 5 5 0 0 0* - ( 1 , 0 ,  1,1,1) 7 
0-3558 0 0 0.3690 0 0 31/3 0 0 0 0 0"* - ( 1 , 0 , 1 , 1 , 1 )  7 
0.3128 0.3128 0-0366 0.3175 0.3175 0.0516 80/9 80/9 13/9 0 0 0"** - ( 1 , 0 , 1 ,  1,1) 7 

Table 6. Fe3W3 C, cubic, a = 11.087 A,, space group Fd3m 

E x p e r i m e n t a l  C a l c u l a t e d  Bu i ld ing  
c o o r d i n a t e s  c o o r d i n a t e s  C a l c u l a t e d  b l o c k  

x y z x y z t~ t 2 t 3 m t m 2 m 3 s y m b o l  n 

i ,~ t t i i ~ ~ 5 o o o* -(1,o, 1) 1o 
5 5 5 (1,o, 1) IO 

-0"1703 -0"1703 -0"1703 -0 ' !750  -0"1750 -0.1750 
3 3 3 0 0 0 - (1 ,0 ,1 )  10 

0"1978 0 0 0"1875 0 0 2 8 8 0 0 1 - (1 ,1 ,1 )  8 
6 0 0 0 ! I (I, 1, 1) 8 

Table 7. AI~oV, cubic, a = 14-516/~, space group Fd3m 

E x p e r i m e n t a l  
A t o m i c  c o o r d i n a t e s  
p o s i t i o n  x y z 

96 Ai (g) 0.0654 0.0654 0.3009 

48 AI ( f )  0-1407 0 0 

16 AI (a) i i i 
16V (c) i i i 
8 Al*(b) ~ ~ 

C a l c u l a t e d  Bu i ld ing  
c o o r d i n a t e s  C a l c u l a t e d  b l o c k  

X y Z tl t2 t3 ml m2 m3 s y m b o l  

0.0682 0.0682 0.2955 3 3 - 9  0 0 2 (2 ,1)F 
- 8  - 8  - 2  0 0 i* (1,1,1) 

0.1364 0 0 6 0 0 1 I 0 - (1 ,  i, I) 

~ ~ o o o i 1 i (2 ,1)F  

u xo yo Zo ad (A) 
U t 0 0 0 0.0277 
U t 0 0 0 0.1015 
U I 0 0 0 0.1172 
U t 0 0 0 0.1457 

* O c c u p a n c y  o f  t h e s e  s i tes  0 - 1 0 % .  

u xo yo Zo a d  (A) 
u~ ,~ i i o.ooo 
u, i ~ t  
u~ ,~ i r 0.0899 

u~ ~ "~ ~' o.1142 
U, 0 0 0 0 

n U Xo Yo Zo Ad (]~) 
II U I 0 0 0.0972 

11 U l 0 0 0 0-0624 

u, ~ ~ ½ o.oooo 

space group consists of 16 building blocks of two 
different types. One of them is around (000), c!!!~ \ 4 4 4 /  

and their face-centered related positions. The two 
building blocks at (000), (¼¼¼) have an inverse center 
at (I-~). Therefore, they can be symbolized as 
(K, L, P, Q, S) and - ( K ,  L, P, Q, S) respectively. 
Those at ( / i l  33 ~i) and (~3)  have an inverse center at 

( ! 1 1 ~  ~888J.~-55-5~ The building blocks at (000) and ~ j  can be 
independent and different. 

It has been shown (Table 6) that Fe3W3C consists 
of two different types of building blocks (1, 1, 1) and 
(1, 0, 1). The building blocks (1, 1, 1) and - (1 ,  1, 1) 
located at (000) and ~444Jt±-~-~ respectively share three 
atoms. Their coordinates are (0.1978 0 0), (0 0.1978 0) 
and (000.1978).  The building blocks (1,0,1)  and 
- (1 ,  0, 1) located at (½½½) and ~444,c3-33~ share only one 
atom, whose coordinates are (555 ~) .  Fe3W3C has two 
different values of n, namely 8 and 10, for the building 
blocks (1, 1, 1) and (1, 0, 1) respectively. The average 
interatomic distance of (1, 1, 1) is 2.9219 A, and that 
of (1, 0, 1) is 2.3419 A,. The reason that n for the 
(1, 1, 1) building blocks is different from that for 
(1,0, 1) is that they consist of different atoms of 
different sizes. The (1, 1, 1) consists of W atoms, 
(1, 0, 1) of Fe atoms. Carbon is located at the center 
of the outer octahedron ofthe building block (1, 1, 1). 
The APAD's of the building blocks (1, 1, 1) and 
(1,0, 1) are 3.9 and 2.6 respectively. C o 3 W 3 C  and 

Co2W4C are isomorphous structures of Fe3WaC. The 
structure built with these two building blocks is shown 
in an earlier paper (Nyman, Andersson, Hyde & 
O'Keeffe, 1978). 

3.5. AI1oV 

Alt0V (Brown, 1957) is cubic, a = 14.516/~, space 
group Fd3m. The construction and distribution of 
the building blocks of AlloV (Table 7) is the same as 
that of Fe3W3 C. The building blocks (2, 1)F and 

t!!_~ t3_33_~ respectively in the - (2 ,  1)F are located at ~222J, ~444J 
unit cell of AlloV. They have an inverse center in ~8aw/-5 _5 _5~ 
which is also the center of a hexagonal prism formed 
by two hexagons of (2, 1)F and -(2,  1)F. An Mg 
atom is situated at the center of the hexagonal prism. 
The building b locks - (1 ,  1, 1)and (1, 1, 1)are located 
at (000) and (¼1_~) respectively. The (1, 1, 1) at (¼¼¼) 
shares three atoms at (0.06540.06540.3009), 
(0-0654 0.3009 0-0654) and (0.3009 0.0654 0.0654) 
with (2, 1)F at (00½). One V atom at (-~-~I) locates the 
centre of the icosahedron formed by the building 
b locks- (1 ,  1, 1)and (1, 1, 1). The APAD of the build- 
ing block (2, 1)F and - (2 ,  1)F is 3.2 and that of 
(1, 1, 1) and - (1 ,  1, 1) is 3.5. A118Cr2Mg3 is an isomor- 
phous structure of AlloV. The structure has been 
described earlier by Nyman, Andersson, Hyde & 
O'Keeffe (1978). 
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Table 8. Pyrochlore [(NaCa)2Nb206F]8, cubic, a = 10.40/~, space group Fd3m 

E x p e r i m e n t a l  
A t o m i c  c o o r d i n a t e s  
p o s i t i o n  x y 

16 Nb in 16(d) t 
8 F in 8(d) 0 0 

16Ca in 16(c) ~ 

48 0 in 48(./3 x 0 
(x =0-316,0.313, 

0-322, 0.330) 

C a l c u l a t e d  
c o o r d i n a t e s  C a l c u l a t e d  

X y Z t I 12 t 3 

B u i l d i n g  
b l o c k  

m t m 2 m 3 s y m b o l  n U 

i i 3 3 3 0 0 0 - ( 1 , 0 )  6 Ut 
3 3 0 0 0 (1,0) 6 U 2 

2 8 8 0 0 I ( I , 1 ,1 )  8 U 2 
0.3125 0 0 

0 0 0 1 1 - ( I , 1 , 1 )  8 U t 

Xo Y0 Zo 

0 0 0 

I l l  -1, -i -i 
- ~ o o  

Table 9. Zunyite [Al13Si5020(OH , F)tsCI], cubic, a = 13.820/~, space group F43m 

E x p e r i m e n t a l  

A t o m i c  c o o r d i n a t e s  
p o s i t i o n  x y z 

4CI in (b) l ~ 

4Si l  in (c) i ~ 

16 Sill in (e) 0.1143 0.1143 0.1143 
4Al l  in (d)  4 / ~ 

48 AII1 in (h) 0-0853 0-0853 -0.2333 

16OI in (e) -0.1750 -0-1750 -0-1750 

16011 in (e) 0 ' i818 0.1818 0.1818 

240111 (OH, F) in ( f )  0-2780 0 0 

C a l c u l a t e d  

c o o r d i n a t e s  
x y z 

0-1136 0.1136 0-1136 

-0.1818 -0.1818 -0.1818 

0.1818 0.1818 0.1818 

0.2727 0 0 

48OIV (OH, F) in (h) 0.1793 0.1793 0.5466 0-1818 0.1818 0.5455 

48OV (OH, F) in (h) 0.1385 0.1385 0.0003 0.1364 0-1364 0 

B u i l d i n g  

C a l c u l a t e d  b l o c k  

t t t 2 t 3 m t m 2 m 3 s y m b o l  n U Xo Yo Zo 

o o o o o o (o,o) 11 u, ~ ~ 

a d ( A )  

0.0 

A d ( A )  

0-0168 

8 8 1 1 1" - ( 2 , 2 ,  1) 11 U t 0 0 0 
- - - 0"1628 

3 3 3 0 0 0 (2,1,1)  11 U t ~ ~ 
3 3 0 0 0 - ( l , 2 , 1 )  Ii  U t ~ i ~ 0'0000 

1 ]1 11 0 0 2* (2,1,1)  11 U, ~ i - I  
0.0735 

12 0 0 0 2 2 - ( 2 , 2 , 1 )  !1 Ut 0 0 0 
14 8 2 2 1 0* - ( 2 , 2 , 1 )  11 U, ~ 0 

- 3  - 3  - 9  0 0 1 (2,1,1)  i l  U, 14 1 i 0.0514 

- 5  - 5  II (2, 1, 1) I1 U t ~ i - i  
6 6 0 3 i 1 - ( 2 , 2 , 1 )  11 U t 0 0 0 0.0413 

- 5  - 5  - I I  I I 3 - ( 1 , 2 , 1 )  11 U, ~ i 

3.6. [(Na,Ca)2Nb206F]8 (pyrochlore) 

This compound (Perrault, 1968) is cubic, space 
group Fd3m as Fe3W3 C and AIIoV, a = 10.4/~. From 
Table 8, building blocks - (1 ,  0) and (1, 0) which are 
occupied by Ca atoms and centered by F atoms are 
located at (000) and (¼11 ~ ) .  The oxygen constitutes 
building blocks (1, 1, 1) and - (1 ,  1, 1) which are 
located at (½½½) and (333) respectively. The Nb atom 
is situated at the center of the outer octahedron of 
(1, 1, 1) and - (1 ,  1, 1). The n of building block (1, 0) 
is 6, and that of (1, 1, 1) is 8, because they are con- 
structed by different atoms, namely calcium and oxy- 
gen respectively. Building block (1,0) is an ideal 
polyhedron, and the APAD's of( I ,  1, 1) and - (1 ,  1, 1) 
are 0.2, 0.02, 0.9, 1.3, 6.5 for five different pyro- 
chlores. 

3.7. Zunyite 

Zunyite [AIt3SisO2o(OH,F)18C1] (Kamb, 1960) is 
cubic, a = 13.820 A, space group FT~3m. the crystal 
of F43m consists of 16 building blocks of four 
different types located at (000), (¼¼¼), ~,2221,[/11~ ~,444'(333~ as 
well as their 12 corresponding face-centered related 
positions. From Table 9, building blocks - (2 ,  2, 1), 
- (1 ,  2, 1), (0, 0) and (2, 1, 1) in zunyite are located at 
(000), c111~ ~3__33_~ ~ , ,  (½11 ~ )  and ~444J respectively. The (2, 2, 1) 
is the building block originally used by Pauling to 
describe this structure, while (2, 1, 1) is the well 
known Keggin unit. The oxygen positions constitute 
quite regular building blocks (2, 1, 1), - (2 ,  2, 1) and 

- (1 ,  2, 1) whose APAD's are 2.4, 2.2 and 1.2 respec- 
tively. 4 SiI in (c) are located at the center of a central 
tetrahedron of a building block - (1 ,  2, 1). 16 Sill in 
(e) are located at the center of a tetrahedron of the 
twin part of a building block -(2,  2, 1). Chlorine is 
surrounded by 18 oxygens and the average inter- 
atomic distance between O and CI is 3.452 ,~ which 
is much longer than the distances of both Si-O and 
O-O. 4 All in (d) are in the centers of tetrahedra in 
the truncated tetrahedra of (2, 1, 1). 48 AIII in (h) are 
in the octahedra of the twin part of (2, 1, 1). 48 AIII 
form a truncated tetrahedron (2, 1) with n = 8.25. 

We conclude that oxygen constitutes the framework 
of building blocks - (2 ,  2, 1), - (1 ,  2, 1) and (2, 1, 1). 
Building blocks - (2 ,  2, 1), - (1 ,  2, 1) and (2, 1, 1) 
share atoms with each other. - (2 ,  2, 1) and (2, 1, 1) 
share all the atoms with each other, and - (2 ,  1, 1) 
share most of the atoms. The APAD's of the - (2 ,  2, 1), 
- (1 ,  2, 1) and - (2 ,  1, 1) blocks are 2.2, 1.2 and 2.2 
respectively. 

3.8. Mg44Rh7 and Na6TI 

M g ~ R h  7 (Westin & Edshammar, 1971) is cubic, 
a = 20.110 ~ ,  and has the space group F43 m as for 
zunyite. The assembly rule of building blocks in 
Mg44Rh 7 is similar to zunyite. Building blocks 
(1 ,0 ,1 ,1 ,1) ,  - ( 1 , 1 , 1 , 1 ) ,  (3,0,1)  and (1 ,0 ,1 ,1 ,1 )  
in Mg44Rh7 are located at (000), ~444,,1!!!~ ~222,/-t !!~ and \444![3-3--35 

and their 12 corresponding face-centered related posi- 
tions, as shown in Table 10. They share atoms with 
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Atomic 
position 

24 Rh(I) in 24(g) 

16 Rh(2) in 16(e) 0.0833 0-0833 0.0833 0.0893 0-0893 0.0893 5 5 5 0 0 0* (1,0, I, 1, I) 14 U 0 0 0 0-2094 
16 Rh(3) in 16(e) 0.3488 0-3488 0.3488 0.3393 0.3393 0-3393 9 9 ?:) 0 0 0* (3,0, i) 14 U ~ ~ ~ 0.3246 
48 Mg(1) in 48(h) 0.0525 0.0525 0-3380 0.0536 0-0536 0.3393 3 3 ~) 0 0 2 (3,0, 1) 14 U 0 0 ~ 0.0366 
48Mg(2) in48(h)  0.1072 0.1072 0.2141 0.1071 0-1071 0-2143 8 8 2 0 0 1 - (1 ,1 ,1 ,1 )  14 U 4t ~ ~ 0.0049 

48Mg(3) in48(h)  0.1949 0.1949 0.4806 0.1963 0.1963 0-4821 11 I1 i 0 0 2* (3,0,1) 14 U 0 0 12 0.0500 
9 0-1964 0-1964 0.4881 - ~  --~ 0 0 1"* - ( I ,  1, i. 1) 14 U ~ i I 0.1510 

48Mg(4) in48(h)  0.0961 0.0961 0.7206 0.0913 0.0913 0-7242 ~ ~ ~ 0 0 0"** (1 ,0 ,1 ,1 ,1)  14 U 1 ~ ~ 0.2653 
0"0893 0'0893 0.6964 5 5 11 I I 0* (3,0,1) 14 U 0 0 12 

48Mg(5) in48(h)  0-1565 0.1565 0-9795 0.1587 0.1587 0-9742 ~ s~ ~3 0 0 0"** (1 ,0 ,1 ,1 ,1)  14 U 0 0 1 0.0868 
0"i548 0"1548 0-9761 - ~  - ~  ~ 0 0 0"* - ( I ,  1, 1, I) 14 U 1 1 1 

24Mg(6) in24(g)  4 / 41 0.3553 ~ 41 0.3571 0 0 6 1 1 0 - (1 ,1 ,1 ,1 )  14 U t 4t ~ 0.0363 
24Mg(7) i n24 ( f )  0 0 0.1824 0 0 0.1845 0 0 33~ 0 0 0"* (1 ,0 ,1 ,1 ,1)  14 U 0 0 0 0-0484 
16 Mg(8) in 16(e) 0.6956 0.6956 0.6956 0.6965 0.6965 0-6965 3 3 3 0 0 0 (1,0, !, 1, I) 14 U ~ ~ ~ 0.0314 
16Mg(9) in 16(e) 0-8338 0.8338 0-8338 0-8393 0-8393 0.8393 5 5 5 0 0 0* (1 ,0 ,1 ,1 ,1)  14 U ~ ~ ~ 0.1919 
16M8(10) in 16(e) 0.5618 0-5618 0-5618 0.5535 0-5535 0.5535 3 3 3 I 1 1 (3,0, 1) 14 U [ 12 ~ 0.2896 
16Mg( l i )  in 16(e) 0.9476 0-9476 0-9476 0.9465 0-9465 0.9465 3 3 3 0 0 0 (1 ,0 ,1 ,1 ,1)  14 U t 1 1 1 0.0384 

Table 10. Mg,,aRh7, cubic, a =20.110 A,, space group FTl3m 
Experimental Calculated Building 
coordinates coordinates Calculated block 

X y Z X y Z t t t 2 t 3 m t m 2 m 3 s y m b o l  n U Xo Yo Zo Ad (A,) 

-~ 14 0.5867 ~ 14 0"5655 0 0 - ~  0 0 0"* (1 ,0 ,1 ,1 ,1)  14 U ~ ~ /4 0-4271 

Table 11. Na6T1, cubic, a = 24.115 ~ ,  space group F713 rn 

Experimental Calculated Building 
Atomic coordinates coordinates Calculated block 
position x y z x y z tt t2 t3 mt  m 2 m 3 s y m b o l  n U Xo Yo Zo Ad ( A )  

Na48(h)t  xxz 0-14228 0-14228 0-03346 0.14286 0.14286 0.03571 8 8 2 0 0 1" (2,0,1,1)  14 U. 0 0 0 0.0578 

Na48(h)2 xxz 0-08984 0.08984 0-26791 0.09524 0.09524 0.27381 ~ !~ '~ 0 0 !** (2,0,1,1)  14 U 
0.09127 0.09127 0.27579 - ~  - ~  L_~ 0 0 0 . . . .  ( I ,0,  1, I, 1) 14 U 

Na48(h) 3 xxz 0.05604 0.05604 0.76942 0.05357 0.05357 0.76190 9 ~ - ~  0 I 0"* (2,0,1,1)  14 U. 
0.05357 0.05357 0.76785 l-i ]-/ 1 0 0 2* - (2 ,1 ,  I )F  14 U 

Na48(h) 4 xxz 0.15395 0-15395 0.52856 0-15873 0.15873 0-52579 ~q 89-° ~ 0 0 0"** ( I ,0 ,1 ,1 ,1 )  14 U 
Na48(h) s xxz 0.19809 0.19809 0.90985 0.19643 0.19643 0.91071 3 3 9 1 1 2* -(2,  I )F  14 U 
Na 24(f) x00 0.10858 0 0 0-10714 0 0 6 0 0 0 I I (2, 0,1,1)  14 U 
T124(f) x0¢ 0.33516 0 0 0.31548 0 0 _~t 0 0 0 0 0"* (1 ,0 ,1 ,1 ,1)  14 U 
Na24(g) x 11 0.06815 i 1 0-06548 1 41 - ~  0 0 0 0 0"* - ( 1 , 0 , 1 , 1 , 1 )  14 V 
Na 16(e)t xxx 0.30267 0.30267 0.30267 0-30357 0.30357 0-30357 3 3 3 0 0 0 - ( i , 0 ,  I, I, 1) 14 U 
Na 16(e) 2 xxx 0.41542 0.41542 0.41542 0.41071 0.41071 0.41071 5 5 5 0 0 0* (1, 0 ,1 ,1 ,1)  14 U 
Na 16(e) 3 x.xx 0.55549 0.55549 0-55549 0-55357 0.55357 0-55357 3 3 3 0 0 0 ( i , 0 ,1 ,  I, 1) 14 U 
TI 16(e)t xxx 0.67234 0.67234 0.67234 0.64286 0.64286 0.64286 6 6 6 1 1 ! - (2 ,  1, I )F  14 U 
T1 16(e)2 xxx 0.16755 0.16755 0.16755 0.16083 0.16083 0.16083 5 5 5 0 0 0* - ( 1 , 0 , 1 , 1 , 1 )  14 U 
T1 16(e)3 xxx 0-90136 0-90136 0-90136 0.89285 0.89285 0.89285 6 6 6 0 0 0 (2,0,1, 1) 14 U 
Void4d ,,,11t ~ ~ i ~ 1 I 0 0 0 0 0 0 - ( 2 , 1 , 1 ) F  14 U 

0 0 0 
0.2033 

0 0 0 
0-1379 

0 0 t 0.1764 
,~ ~, I o.2153 
0 0 0 0-0348 

0 0 0.4753 
' ~ 1, 0.0645 

~ ~ 0.0217 
12 ~ 0.1970 
½ ~ 0.0720 

i ~ ] 1.23 
1 ~ i 0.2811 
I I i 0-3589 
,~ i i o.oooo 

each other. For instance, (1, 0, 1, 1, 1) around (000) and (3, 0, 1) in Mg44Rh 7. Building block (2, 0, 1, 1) 
and - (1 ,  1, 1, 1) around t!!!~ share three atoms, in Na6T1 has one more atom (666) [i.e. TI(16) in (e)3 ] k 4 4 4 1  

( 0 . 1 5 6 5  0 - 1 5 6 5  - 0 . 0 2 0 5 ) ,  ( 0 . 1 5 6 5  - 0 . 0 2 0 5  0 . 1 5 6 5 )  than the building block (1, 1, 1, 1) in Mga4Rh7, and 
and (-0.02050.15650.1565).  Building block (3,0, 1) in Mg~Rh7 has one more atom (999) [i.e. 
- (1 ,  1, 1, 1) around (¼¼¼) is connected to building 16Rh(3) in 16(e)] and one less atom (666) [i.e. TI(16)- 
block (3, 0, 1)around (00½)and they share three atoms (e)l] than Na6T1. As a result, Na6TI has 15 indepen- 
(0.19490.19690.4806), (0 .1949-0 .4806-0 .1919)  dent positions, i.e. one more independent position 
and (-0 .4806 0.1949-0.1949).  The building block than Mga4Rh7, and three different positions from 
(3, 0, 1) around (00½) is in contact with (1, 0, 1, 1, 1) Mga4Rh7, as shown in Tables 10 and 11. A model of 
around (¼¼3) and shares three atoms Mg44Rh 7 is shown in Fig. 2 of an earlier paper 
(0.0961 0.0961 0.7206), (0.0961 1.7206 0.0961) and (Andersson, 1978). 
(1.72060-09610.0961). The APAD's of building 
blocks (1 ,0 ,1 ,1 ,1 ) ,  - ( 1 , 1 , 1 , 1 ) ,  (3 ,0 ,1)  and 

3.9.  Cu4Cd 3 (1, 0, 1, 1, 1) are 2-9, 5-0, 2.5 and 8.6 respectively. The 
APAD ofthe building block (1, 0, 1, 1, 1)around(¼¼¼) C u 4 C d  3 (Samson, 1967) " cubic, a =25-871 ,~, 
and that of (1,0, 1, 1 1) around c3_3_3_~ , ~444J are quite space group F43m. It contains 1124 atoms in the unit 
different, because they are independent of each other, cell and it is one of the most complicated inorganic 
and have no related symmetry, compounds. The assembly rule for the building blocks 

Na6T1 (Samson & Hansen, 1972) is not isomorphic of C u 4 C d  3 is similar to zunyite, Mg44Rh 7 and Na6TI, 
with Mg44Rh7, but very similar. Na6T1 has building but its unit cell is much bigger. The description of 
blocks (2, 0, 1, 1) and (2, 1, 1) instead of - (1 ,  1, 1, 1) Cu4Cd 3 is very simple in terms of building blocks in 
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Atomic  
posi t ion x 

l Cu 96(i) t 0.1018 
2 Cu 96(i) 2 0.0036 

3 Cu 48(h) t 0.2142 

4Cu  48(h) 2 0.1476 

5 Cu 48(h) s 0.0560 

6 Cu 48(h) 4 0.1138 

7 Cu 48(h) 5 0.0339 
8Cu 48(h) 6 0.2157 

9 Cu 48(h) 7 0.1931 

10Cu 48(h) 9 0.1026 
11 Cu 48(h)to 0.1793 
12 ~Cd+~Cu 48(h) H 0"1060 
13 Cd 48(h)t2 0'0663 
14~Cu+½Cd 48(h)t 3 0"1498 
15~Cu+~Cd 48(h), 4 0"0354 
16 ½Cu+½Cd 48(h)~5 0.2130 
17 Cd 48(h)16 0"1119 
18Cd 24(f)  t 0"0876 
19Cd 24(f)  2 0-3635 
20Cu 24(g)t 0-5006 
21Cu 24(g) 2 0.6793 
22 Cu 16(e) t 0-0744 

23 Cd 16(e) 2 0.1815 

24 Cd 16(e) 3 0.3632 

25 Cd 16(e), 0.4315 
26 Cu 16(e) 5 0-5346 
27 Cu 16(e) 7 0.6262 
28Cu 16(e) s 0.8203 
29Cu 4(c) 

Table 12. Cu4Cd3, cubic, a = 25.871 A, space group F43m 

Calculated Calculated 
coordinates t t t 2 t 3 

x y z 9 15 

0.1022 0.1705 0.4659 0 10 16 
0.0000 0.1389 0.2222 3 3 15 
0.2159 0.2159 0-0795 16 16 6 
0.7222 0.2222 0.0833 § 9 15 
0.1477 0.1477 0.0795 17 17 

5 5 29 
0.0568 0.0568 0.1704 

12 12 0 
10 10 22 

0.1136 0.1136 0.2500 3 3 2-/ 

0.0341 0.0341 0.2613 3 3 9 
0.2157 0.2157 0.3522 5 5 17 

17 17 3 
0.1932 0.1932 0.4432 

9 9 3 
0.1023 0.1023 0-5335 - ~  - ~  - 3 -  
0'1798 0"1798 0-5482 8 8 14 
0-1111 0"1111 0"8055 6 6 18 
0.0681 0.0681 0.7045 g 8 
0.1447 0.1447 0.7237 2 2 14 
0"0278 0"0278 0"8055 - ~  - ]  
0"2105 0"2105 0"9254 8 8 
0"1111 0"1111 0'9722 6 0 0 
0"0833 0 0 ]~ 0 0 
0"3636 0 0 

0 0 
0.6710 ~ ~ 6 6 6 
0.0833 0.0833 0.0833 6 6 
0.1818 0.1818 0.1818 14 14 14 
0.1944 0.1944 0.1944 12 12 12 

10 I0 10 
0'3636 0"3636 0"3636 ~ ~ 

0'4318 0.4318 0"4318 3 3 3 
0-5340 0-5340 0"5340 11 11 11 
0"6250 0"6250 0.6250 6 6 6 
0-8289 0.8289 0-8289 0 0 0 

Experimental  
coordinates 

y z 

0.1714 0.4662 
0.1362 0.2256 

0.2142 0.0813 

0.1476 0.0784 

0.0560 0.1683 

0.1138 0.2499 

0.0339 0.2604 
0.2157 0.3517 

0.1931 0.4424 

0.1026 0.5335 
0.1793 0.5474 
0.1060 0-8117 
0.0663 0.7043 
0.1498 0.7244 
0-0354 0.8091 
0-2130 0.9138 
0.1119 0.9796 

0 0 
0 0 

0-0744 0.0744 

0"1815 0-1815 

0"3632 0"3632 

0.4315 0.4315 
0-5346 0.5346 
0.6262 0.6262 
0.8203 0.8203 

ml m2 m3 Xo Yo Zo 

2 1 4  0 0 t 
0 0 0 

0 0 2  ' ~ ' ~  
o o o  

O O l  ,~ ,~ ,~ 
4 4 0  1 1 1  

0 0  ½ 
1 1 3  1 4 1 1  

0 0 ½ 
0 0 4  o o ~  
2 2 0  t 1 t  

2 2 4  ~ ~ ~ 
0 0 ~ 

• 2 2 3  0 0 ~ 
, l i t  
0 0 1 
0 0 ½ 
, l , l l  
0 0 1 
1,,11 

0 0 1 0 0 0  
1 1 0 0 0 0 
1 1 3  ½ ~ ½  

0 0 I i 1 41 
0 0 0 

o o o  

3 3 3  ½½½ 

1 1 1  ½ ½ ~  
2 2 2  ~ ½ ~ 

~ ½  

1 1  I 1 1 1  

Building 
block 

U symbol  

U, - (4 ,  5, I) 
U, - (2 ,0 ,  I , L  I) 
U I (4,1, I) 

U t - (2 ,0 ,  l , i ,  1) 
U t (4,1,1) 

(4.1,1) 
U, - (4 ,  5,1) 

(4,1.1) 
Ut -(4,  5, I) 

U I -(4. 5,1) 
u~ (4, I, I) 

(4,1,1) 
UI (4, 5, I) 

u - (4 ,  5,1) 
U - (2 ,0 ,1 ,1)  
U - ( 2 , 0 , 1 , i ,  1) 
U (4,3,1) 
U - (2 ,0 ,1 ,1)  
U - (2 ,0 ,  I , i ,  I) 
u - (2 ,o ,  1,1) 
U (2,0, 1, i ,  I) 
U - (2 ,o ,  1 , i ,  1) 
u - (4 ,  5, i) 

u t  - (2 ,o ,  I, i) 
U t (2,0, 1, i ,  1) 

(4,1.1) 
U, - (2 ,0 ,  I , L  1) 

-(4, 5, I) 
UI (4,1, 1) 

U~ -(4 ,  5, I) 
U t - (4 ,  5, 1) 
U t (4,3,1) 
U t - ( 2 , 0 , 1 , 1 )  
U I (4, I, I) 

n Ad(A) 
22 0-0266 
18 0"!459 
22 

0"0732 
18 
22 0"0286 

22 0.0617 

22 0"0078 

22 0"0244 
22 0-0149 

22 0"0210 

22 0"0110 
19 0-0276 
18 0"2460 
22 0"0661 
19 0'1874 
18 0'2932 
19 0"3137 
18 0"i936 
18 0"1926 
22 0-0045 

19 0-2121 
18 0"3988 
22 0"0134 
18 0"5780 

22 0"0179 

22 0"0134 
22 0"0269 
22 0'0518 
19 0"3719 
22 

Table 2. Building blocks - (2 ,  0, 1, i ,  1), (4, 1, 1), 
- (4 ,  5, 1) and - (2 ,  0, 1, 1) distribute around (000), 
( ! ! ! ~  / ! ! ! ~  and r3_3__3x and their 12 corresponding 4 4 4 / ,  ~,2221 \ 4 4 4 !  

face-centered related positions respectively. The 
APAD's for them are 7.2, 1.2, 1.9, 6.9 respectively. 
An obvious feature of this compound is that it has 
three different n values for different building blocks. 
They are 22 for (4 ,1 ,1)  and - ( 4 , 5 , 1 ) ,  19 for 
- (2 ,  0, 1, 1) and 18 for - (2 ,  0, 1, 1). The reason why 
different building blocks have different n is that the 
octahedron and tetrahedron for different building 
blocks have a different composition of Cu and Cd. 
The Cu atomic percentages of octahedra and tetra- 
hedra in the building blocks - (4 ,  5, 1) and (4, 1, 1) 
are 100; however, those of ( - 2 , 0 ,  1, 1) and 
- (2 ,0 ,  1, 1, 1) are 73.9 and 60.4 respectively. The 
average Cu-Cu distance is 2.4945/~, and that of 
Cu-Cd is 2.9750/~. The ratio of atomic distances of 
Cu-Cd and Cu-Cu is 22 : 18.76. Therefore, the higher 
the Cu atomic percentage of a building block, the 
larger is n. This is also the reason why the APAD's 
of the building blocks - (2 ,  0, 1, i ,  1) and - (2 ,  0, 1, 1) 
are much bigger than those of the building blocks 
- (4 ,  5, 1) and (4, 1, 1). The interatomic distances in 
the octahedra and tetrahedra of the building blocks 
- (4 ,  5, 1) and (4, 1, 1) are entirely Cu-Cu distances. 

The deviations of atoms of these two building 
blocks are, of course, very small. However, some 
of the interatomic distances of building blocks 
- (2 ,  0, 1, i ,  1) and (2, 0, 1, 1) are those of Cu-Cd, 
some are Cu-Cu. Of course, their deviations are much 
bigger than those o f - ( 4 ,  5, 1) and (4, 1, 1). Like other 
compounds, the building blocks in Cu4Cd 3 share 
atoms with each other. As shown in Table 12, 
- (4 ,  5, 1) shares atoms 48(h)3, 48(h)4, 48(h)7 and 
16(e)3 with (4, 1, 1), and (4,1, 1) shares atoms 48(h)! 
and 16(e)2 with - (2 ,  0, 1, 1, 1). (2, 0, 1, 1) does not 
share atoms with any building block, but atoms 
48(h)1o of (2, 0, 1, 1) and 48(h)! of (2, 0, 1, i ,  1) con- 
stitute icosahedra with 16(e)s of - (2 ,  0, 1, 1) located 
at the center of the icosahedra. A model of Cu4Cd 3 
was shown in Figs. 2 to 5 of Andersson's (1980) paper. 

3.10. GeasP818 

Ge3sPsls (Menke & von Schnedng, 1973) is cubic, 
a = 10.507 A, space group P43n. This space group 
consists of two building blocks around (000) and 
(!_1!~ of the same type. Ge3sPsls consists of four 2 2 2 1  

frameworks which are - ( 1 , 0 ,  1), (1,0, 1), dodeca- 
hedron and truncated octahedron as shown in Table 
13. The centers of these frameworks coincide with 
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Table 13. Ge38PsIs, cubic, a = 10.507/~,, space group P43n 

E x p e r i m e n t a l  
A t o m i c  c o o r d i n a t e s  
position x y z 

24Ge( l )  in (i) -0-0009 0-1186 0-3072 

8 Ge(2) in (e) 0-1842 0.1842 0.1842 

6Ge(3) in (c) 0 1 

8 P in (e) 0.8152 0.8152 0.8152 

6 I(I) in (d) 0 ~ 1 

21(2) in (a) 0 0 0 

C a l c u l a t e d  
c o o r d i n a t e s  

x y z 

0 0"1158 0"3032 

0-1875 0-1875 0'1875 

0-8125 0-8125 0-8125 

0 ~ i 
0 0 0 

Calculated 
tt t 2 13 

-5  -5  - 5  
3 3 3 
5 5 !1 

5 5 - I 1  
5 5 5 

-3  -3  - 3  

Bu i ld ing  
block 

symbol n U Xo Yo z0 Ad (,~,) 
Dodecahedron 4 0.0499 

(!,o, 1) u ,  ~ ½ 
- ( I , 0 , 1 )  4 U 1 0 0 0 0.0600 

(1,2,1) /./4 2 l - t  - t  
Truncated oetahedron 4 0.0000 

- (1 ,2 ,1 )  U, ~ ~ 

-(1,0,1) 4 U 4 ~ J ~ 0.0491 
( I ,0 ,1)  U, 1 I I 

Truncated octahedron 4 0.0000 
Truncated octahedron 4 0.0000 

each other, so they interpenetrate each other. The 
- (1 ,  0, 1) framework is occupied by Ge, (1, 0, 1) by 
P. The two frameworks are located at (000) and (½11 i i ) .  

As a result, the atoms of one framework are located 
at the centre of the outer tetrahedron of the other, 
but the central tetrahedron of these two frameworks 
is occupied by an I atom. These two frameworks are 
exactly the same as that of the F atoms in SiF4. In 
addition, frameworks (1, 0, 1) and -(1 ,  0, 1) can be 
replaced by - (1 ,  2, 1) and (1, 2, 1) respectively since 
they share all the atoms with each other. The third 
framework is a dodecahedron which consists of 
24Ge(1) in (i) and building blocks (1,0,1) and 
- (1 ,  0, 1). The integer n for building blocks (1, 0, 1) 
and - (1 ,0 ,  1) is 4. The eight atoms of the central 
tetrahedron of (1,0, 1) and - (1 ,0 ,  1) belong to a 
dodecahedron. The positions of these eight atoms 
which determine the rest of the dodecahedron were 
calculated and are given in Table 13. The dodeca- 
hedron of Ge38PsI8 consists of 20 atoms, i.e. 16 Ge 
and 4 P, and is centered by atom I. 

The average interatomic distance between an I 
atom and atoms on the dodecahedron is 3.41/~, and 
that between atoms on the dodecahedron itself is 
2-40 t~,. The coordinates of the nearest two atoms of 
the two dodecahedra at (000) and 1222 !¢ili~ respectively 
are (0.1842 0.1842 0.1842) and (0.3152 0.3152 
0.3152). The distance between these two atoms is 
2.38/~ and very close to 2.40,~,. The fourth 
framework is a truncated octahedron. Its centres are 
also in (000) and (½11 ~) .  The truncated octahedron 
consists of four hexagons withedge = (21/_2/_2) a whose 

t!!!~ (¼11 l ,  ~ ) ,  (~¼) and (¼11 a a) respec- centers are at ,444,, 
tively. The distance between the atom in the hexagon 
and 24 Ge(1) in (i) is 2.45 A which also is very close 
to 2-40/~. The APAD's of (1,0,1), (1,2,1),  
dodecahedron and truncated octahedron are 1.8, 1.4, 
2.2 and 0-0 respectively. It is concluded that this 
structure is very close to an ideal model. P43n is a 
subgroup of I43m. Ge38P818 will change into I7~3m 
from P43n, if the coordinates of 24Ge(1) in (i), 
(-0.00090-11860.3072), are replaced by (0.0000 
0.1186 0.3072), and 6 I(1) in (d) is replaced by 6 Ge. 
Therefore, the chemical formula will change into 
Ge,~P812. But these two structures can be described 

by the same building blocks. Of course, PT13n 
is also a subgroup of Pm3n. The Ge38P818 will be- 
come Pm3n if the coordinates of 8 P in (e) of 
Ge38P818 change into (0"81580.81580.8158) from 
(0.8152 0.8152 0.8152) and 8 P atoms are replaced by 
Ge. The chemical formula of Ge38P818 will become 
Ge4618 correspondingly. In fact, the assumed structure 
is an isomorphous structure of Ge~K8, Sn~K8, 
Si46Na8, and Ge38PsBr8 and Ge38As818 are isomor- 
phous with Ge38P818. 

3.11. Li7VN4 

L i 7 V N 4  (Juza, Geiren & Haug, 1959) is cubic, a = 
9.60A, space group P43n. It contains four 
frameworks which are the building blocks (2, 2), 
(2, 1), - (2 ,  0) and truncated octahedra as shown in 
Table 14. The dominant unit is the building block 
(2, 2). There exist three layers of atoms parallel to 
the (111) lattice plane between (000) and (111~ 

because n = 6. Accordingly, the distance between two 
surfaces of two building blocks (2, 2) around (000) 
and (½11 ~ )  is one atomic layer or the height of an 
octahedron. These two surfaces constitute four 
trigonal prisms; one is a central trigonal prism and 
three are outer ones. Building block (2, 2) has six 
octahedra, eight tetrahedra and 32 trigonal prisms 
around it. The six atoms at the vertices of the central 
octahedron of building block (2, 0) are located at the 
center of the octahedron of building block (2, 2). The 
four atoms at the vertices of the outer tetrahedron of 
building block - (2 ,  0) are situated at the center of 
the central trigonal prisms. The four N atoms at the 
vertices of the central tetrahedron of building block 
(2, 1) are located in four of the eight tetrahedra of 
building block (2, 2), but not at the center. The three 
N atoms at the vertices of the triangle of building 
block (2, 1) are located in the outer trigonal prisms. 
The hexagon which constitutes a truncated octahe- 
dron is parallel to the bottom of a trigonal prism and 
is half the height of the trigonal prisms, as shown in 
Fig. 6, which is projected along [111]. Li7VN4 will 
become I7~3m and its chemical formula will become 
'Li2N', if 6 V(2) in 6(c) are replaced by 6 Li (anti- 
fluorite). Building blocks (2, 2), - (2 ,  0) and truncated 
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Table 14. Li7VN4, cubic, a =9 .60/~ ,  space group P43n 

E x p e r i m e n t a l  
A t o m i c  c o o r d i n a t e s  
p o s i t i o n  x y z 

2v(1 )  in 2(a)  0 0 0 
6 V(2) in 6(c) ~ ~ 0 
8N(3)  in 8(e) 0.120 0.120 0.120 

24 N(4) in 24(0 i i 
6 Li(l) in 6(b) 0 ~ 
6 Li(2) in 6(d)  ~ 0 
8 Li(3) in 8(e) 1 41 

12 Li(4)in 12(f) 14 0 0 
24 Li(5) in 24(i) ~ at 0 

C a l c u l a t e d  
c o o r d i n a t e s  C a l c u l a t e d  

x y z II t2 t3 ml m2 m3 

0 0 0 0 0 0 1 1 1 
,1 ~ o 

0.125 0.125 0.125 3 3 3 1 1 I 
| -~ i ~ ~ ~ 0 0 2  
0 ~ -~ 12 0 0 2 2 0  

o ' 
4t 14 41 6 6 6 0 0 0 
t4 0 0 6 0 0 I 1 0 
a t at 0 6 6 0 3 1 1  

B u i l d i n g  
b l o c k  

s y m b o l  n U Xo Yo Zo Ad  ( A )  

(2,2) 6 U~ 0 0 0 0.0000 

Truncated octahedron 0.0000 
(2, I) 6 U I 0 0 0 0'0831 
(2,1) 6 u, ½ t t o.oooo 
(2,2) 6 U 4 ~ ~ ~ 0.0000 

Truncated octahedron 0.0000 
- ( 2 , 0 )  6 U~ 0 0 0 0.0000 
-(2.0) 6 u, 0 0 0 0.0000 

(2,2) 6 U~ 0 0 0 0.0000 

octahedra are ideal polyhedra. The APAD of (2, 1) 
is 0.7. Accordingly, Li7VN4 consists of almost ideal 
building blocks. 

4.  D i s c u s s i o n  

Up to now, we have described 12 c.c.p, crystals which 
belong to four space groups, I713m, Fd3m, FF13m and 
P43n. The integers n of all the building blocks are 
4, 6, 7, 8, 10, 11, 14, 18, 19, 22. We can conclude that 
all these structures or their dominant parts can be 
described by the building blocks in Table 2. The rest 
of the atoms of these structures are located at the 
centers of the tetrahedra or octahedra of these build- 
ing blocks or at the center of a trigonal prism, 
hexagonal prism, icosahedron, dodecahedron or a 
big cavity formed by these building blocks. ( I l l ) -  
twinning in c.c.p.-related structures changes the 
orientation of a tetrahedron and an octahedron. 
Second-order and third-order twinning changes their 
orientation progressively. The building blocks 
(2, 0, 1) and (1, 1, 1), (2,1, 1) and (2, 0, 1,1), (2, 0, 1) 
and (1, 1, 1, 1), (2, 0, 1, 1, 1) and (2, 0, 1, 1, 1) etc. can 
all form icosahedra and naturally there is an atom 
located at the center and this atom is a component 
part of these building blocks. But in most cases it is 
a heterogeneous atom. Consequently, (111)-twinning 
of a Td polyhedron creates a method of forming a 
trigonal prism, hexagonal prism, icosahedron etc. 
Such polyhedra, tetrahedra and octahedra can 
together accommodate quite a range of heterogeneous 
atom sizes and compound compositions. The same 
space groups have the same assembly rule of building 

1 0.1 
2. 1 

2 lr  
o L i  o k '  x N  

Fig. 6. Part of the structure of LiTVN4. 

blocks which is independent of the size of a unit cell. 
The structural difference between the smallest and 
the biggest unit cell in the same space group lies only 
in the size of building blocks. The structural descrip- 
tion of a complicated c.c.p.-related crystal can be 
simplified greatly if we use building blocks. There 
exists a very close relationship between a group and 
its subgroup, and c.c.p.-related structures belonging 
to the space groups given in Table 1 can be described 
with these methods. 

The CSL model with 2 =3  is quite an accurate 
model for a description of c.c.p.-related structures. 
APAD's of building blocks range from 0 to 8.6 for 
12 crystals and the average APAD of all the building 
blocks in this paper is 3.2, as shown in Table 15. 

As mentioned in the introduction, there exists a 
very close relationship between the CSL model for 
structure description and unit-cell twinning. For 
example, ~ = 1 1 ,  which is twinning of (113) 
(Andersson & Hyde, 1974; Hyde, Andersson, Bakker, 
Plug & O'Keeffe, 1978), can describe hundreds of 
compounds. As a matter of fact, ,~ = 3 can describe 
not only h.c.p, and c.c.p, structures but also pen- 
tagonal Frank-Kasper  phases etc. Z = 5 is suitable 
for describing some phases of tetragonal, orthorhom- 
bic, monoclinic systems. The CSL model for structure 
description is a rather general one. For instance, there 
almost always exists a CSL among domains which 
are related by a crystallographic operation such as 
reflection, rotation, threefold and fourfold axes and 
intergrowth etc. We shall demonstrate this in a series 
of papers. 

5. C o n c l u d i n g  r e m a r k s  

The CSL model with ~ = 3 used to describe c.c.p. 
structures has the following advantages: 

1. General. The structure of a c.c.p.-related crystal 
can always be described with twin operations in a 
unit cell. All the c.c.p.-related structures which we 
have studied can be described with the CSL of 2 = 3 
and using the building blocks given in Table 2. 

2. Quantitative structure description. In order to 
describe some of these structures quantitatively, two 
formulae were derived earlier, (2, 2, 2) and 

( x , y , z ) = m / 4 n  (5.1) 



QI-BIN YANG AND STEN ANDERSSON 13 

Compound 

SiF 4 
y-Brass CusZn a 
a-Mn 
[(Na.Ca)2Nb206F] 
Fe3W3C 
Zunyite 
AIt o V 
Mg44Rh7 
Na6TI 
Cu4Cd 3 

Ge3sPsla 

LiTVN 4 

Table 15. Summary of results for 

[(Na.Ca)2Nb206F] 
Fe3W3C 
Zunyite 
AI~oV 
Mg,14Rb7 
Na6TI 
Cu4Cd 3 

Lattice 
Crystal Space constant Building block 1 
system group (A) symbol center n 

Cubic I713m 5.41 - ( I ,  0, 1) 0 00 4 
Cubic I2~3ra 8.878 -(1,0, l, l, !) 000 7 
Cubic I713m 8.89 -(2,1, 2) 0 0 0 8 
Cubic Fd3m 10-40 -(  I, O) 0 0 0 6 
Cubic Fd3m 1 ! .087 ( I, 1,1 ) 0 0 0 8 
Cubic FTl3m 13-820 -(2, 2, 1 ) 0 0 0 11 
Cubic Fd3m 14.516 -(1, !, 1 ) 0 0 0 I I 
Cubic FTl3ra 20.110 (1,0, 1, 1, !) 000 14 
Cubic F43ra 24'115 (2,0, 1, i) 000 14 
Cubic FT13m 25-871 -(2, 0, I, L 1) 0 00 18 

-(1,o, 1) 
Cubic P2~3n 10.507 0 0 0 4 

(I,0, I) 

Cubic PT13n 9-60 (2, 2) 0 0 0 6 

Building block 3 

Cubic Fd3m 10-40 (1, O) ~ [ -'4 6 
Cubic Fd3m 11-087 -(1,1, i) ~114 8 
Cubic F2~3m 13.820 -(1,2, 1) ~ 11 
Cubic Fd3m 14.516 (1,1, !) t~[ 11 
Cubic F43m 20.110 -(1,1, 1, 1) 41 ~ 14 
Cubic F43m 24.115 - ( i ,0 ,  1, 1, 1) ~ 14 

[1_1 Cubic FT13m 25.871 (4, 1, 1) ,, ,, 4 22 

c.c.p, structures 

APAD symbol 

5.7 -(1, 0, 1) 
4-2 -(1,0, l, 1, l) 
4.4 -(2,1,2) 
0 (i,1,1) 
3.9 (1,2, !) 
2.2 (0,0) 
3"5 (2, 1) 
8.4 (3,0, I) 
3.3 -(I,0, I, I, I) 

7.2 -(4, 5, 1) 
1-8 -(1,0, 1) 
1.4 (I,0, I) 
0.0 (2.2) 

0 -(I, I, I) 
3"9 -(I, 2, I) 

1"2 (2, 1, I) 
3"5 -(2, I) 
2"5 (I,0, I, I, I) 

6.4 -(2, 1) 
1.4 -(2,0, I, I) 

Building block 2 
center n APAD 

I I~  4 5 7  
~ I  7 4'2 
-~-~-~ 8 4-4 
~ 8 0 . 2 - 6 . 5  
~ l0 2.6 
~I~ 11 0.0 
' - ~  i i  3.5 
~ [  14 5'0 
~ [  14 4"2 
~ ~ 22 i.2 

1.8 
~ 4 

I-4 
~[~ 6 0.0 

Building block 4 
I ~  8 0.2-6"5 
~ 10 2"6 
~ i l  2-4 
,~ ,~ ,~ 11 3.5 
~ 14 2-9 
l ]~  14 8"6 

~ ~ 19 6"9 ,144 

by one of us (Andersson, 1980). However, (5.1) has 
to be modified, because (a) the limit of integer m 
was not given, and (b) xyz are not independent since 
they are the three coordinates of one and the same 
atom. (5.1) was thus an oversimplification and (2.2.6) 
and (2.2.7) have solved these problems. These for- 
mulae give the true description of the coordinates of 
atoms in a crystal. Finally we can derive the accuracy 
of a description of a crystal structure. 

3. Symbolism for a building block. Earlier building 
blocks were given special names like pyrochlore unit, 
Keggin unit, stella quadrangula, truncated tetra- 
hedron, Friauf polyhedron etc. The relationship 
among these building blocks was not obvious. We 
can now denote them in terms of two, three, four or 
five integers, i.e. (K, L), (K, L, P), (K, L, P, Q) or 
(K, L, P, Q, S) which can be used in the formulae 
(2.2.6) and (2.2.7). There is a common relation of 
Z = 3 among them. 

4. The convenience of building a model of a c.c.p. 
structure. The shortest interatomic distances and their 
average value can be calculated from the coordinates 
of a structure. Then n can be calculated by (2.2.2). 
The assembly rule for building blocks in a c.c.p. 
structure is determined by its space group. The build- 
ing blocks of a structure can easily be found in terms 
of n and space group. The relationship among these 
building blocks can be found easily by means of 
shared atoms. For example, AlloV is of space group 
Fd3m and consists of two kinds of building blocks, 
(2, 1) and (1, 1, 1), which share three atoms on the 
triangle surface of (2, 1) and on the triangle surface 
of the outer octahedron of (1; 1, 1). Putting these two 
surfaces together, the model of Al~oV can be built. 
This is easily programmed, and the structure descrip- 
tion can be made with computer graphics. 

5. The possibility of solving an unknown complex 
and c.c.p.-related structure. Given n and the space 
group of a structure, various building blocks can be 
derived. The distance between two building blocks 
must be n/2 or n/4, and building blocks must share 
atoms. This algebraic method seems to us to be much 
simpler and more straightforward than the stochastic, 
geometrical method used by Samson (1964). This we 
hope to demonstrate in a forthcoming paper. 
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Hyde, Physics Department, Monash, Melbourne. 
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Abstract 

A new description of the ordered part of the crystal 
structure of NaCd2 is proposed. A framework of 
cadmium Friauf polyhedra, related to but different 
from that of C u 4 C d 3 ,  interpenetrates a partially disor- 
dered sodium-cadmium structure. Using matrix 
algebra developed for the coincidence site lattice 
theory, atomic coordinates can be calculated which 
are very close to those experimentally determined. 

Introduction 

The crystal structure of NaCd2 (fl-Mgo2Al3 is isostruc- 
tural) is cubic, Fd3m, with a = 30.56 A, and approxi- 
mately 1192 atoms in the unit cell, as determined by 
Samson (Samson, 1962, 1965). According to Samson's 
description, the unit cube contains 672 icosahedra, 
252 Friauf polyhedra, and 244 miscellaneous, more 
or less irregular polyhedra. 

Derivation and description 

From Samson's data for f l -Mg2Al  3 the structure was 
plotted with cubic axes. Two different building blocks 
consisting of Friauf polyhedra were derived, and 
these could be joined together in the space group 
Fd3m. The derived structure contained the cadmium 
atoms numbered 1, 2, 3, 4, 5 and 6 (from the structure 
of NaCd2) and is shown in Fig. 2. These building 
blocks are red, yellow and green, the red and yellow 
building blocks being identical units, but in opposite 
orientations. 

In a parallel article (Yang & Andersson, 1987), we 
give an exact and general description of the cubic 
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structures that contain building blocks, using matrix 
algebra and symmetry considerations. It was also 
pointed out that this method could be used for a 
direct determination of complex structures. It was 
decided to carry out a test on NaCd2, as Samson's 
structure determination of this compound had resul- 
ted in a relatively high R factor, viz. 0.17. Crystals 
of NaCd2 were prepared in silica tubes. Complete 
data were collected using a Nicolet diffractometer 
with Mo Ka radiation, from a suitable crystal sealed 
in a glass capillary. 

From the general formula 

a = n(21/2)d/3 

as derived by Yang & Andersson (1987), d is the 
shortest interatomic distance and was determined 
from the three-dimensional Patterson synthesis to be 
0-09744 ~ ;  n = 21.77 ~ 22. The space group of NaCd2 
is Fd3m, which is composed of 16 building blocks 
of two types. 

The nearest two building blocks are those located 
at (000) and ~44,~J~!!!~ respectively. We assume that the 
building block around (000) is (KLPQS); then that 
around \4 4 4![-1-11~ must be - ( K L P Q S ) .  The interface 
between these two building blocks is the (111) lattice 
plane through (-~-~-~). Let (xyz) be the coordinates of 
the atoms in the interface. Then 

( x a + y b + c ) ( a + b + c )  = x + y + z  =3 /8  

and 
t~ + t2+ t3 = 4n(x + y + z) = 33. 

The only building block in Table 2 of our parallel 
paper (Yang & Andersson, 1987_) which has tl + t2+ 
t3=33, i.e. coordinates (2311 1) or (11 11 11), is 
(4,3, 1). The interface of two building blocks, as 
shown in Fig. 1, consists of these two independent 
coordinates according to symmetry operations. 
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