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Abstract

The coincidence site lattice (CSL) theory, usually
used to find models for grain boundaries, is shown
to give a quantitative and accurate description of
crystal structures. The CSL model with 2 =3 gives
building blocks which are defined and symbolized in
terms of 2, 3, 4 or 5 integral numbers, i.e. (K, L),
(K,L,P), (K,L,P,Q) or (K,L P,QS). The
assembly rule of building blocks in a c.c.p.-related
crystal is analyzed in terms of 17 space groups. The
relationship between a group and its subgroup is
discussed. Two formulae which can calculate the
coordinates of the atoms of a building block and a
crystal structure are given. The following structure
types have been analyzed: SiF,, a-Mn, y-brass,
Fe,W,C, Al,,V, pyrochlore, zunyite, Mg Rh,, NagTl,
Cu,Cd,;, Ge;sPgls and Li;VN,.

1. Introduction

The empirical use of building blocks of atoms has
been very fruitful in the description of complex crystal
structures. The building blocks were almost always
found to be units of simpler structures. Complex
structures were described by letting the simpler blocks
repeat by the classical operations of translation,
reflection and rotation (Andersson, 1981; Andersson
& Hyde, 1982).

By strictly describing and defining building blocks
according to the symmetry of a crystal and repeating
it with twin, rotation or reflection operations, we have
arrived at a general and quantitative method for cal-
culating atomic positions of even the most complex
cubic inorganic structures. The mathematical concept
used here is the same as that used in the study of
grain boundaries and their coincidence site lattices
(CSL), viz. matrix algebra.

It can be shown that for a rotation matrix of a
cubic lattice
a;; a;; Gy

1
R=—\a; a» axy

a;, ax Qas;

then V.= NV, for p.c., b.c.c. and f.c.c. (Grimmer,
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Bollmann & Warrington, 1974) where V; is the
volume for a standard cubic unit and V. the volume
for a structure unit derived from the CSL. They also
showed that N =3 for these three cubic cases, with
2=3,5,7,... (X =1is simple translation), where X
is the CSL parameter. A simplified method to find
such a parameter has been derived by one of us (Yang,
1980, 1982). The smaller is X, the larger is the coin-
cidence coefficient and the lower is the grain-
boundary energy in most cases.

The CSL model for description of the structure is
very closely related to unit-cell twinning (Andersson
& Hyde, 1974) and we shall discuss it in § 4.

2. Building blocks

Twins with {111} composition lattice plane have the
smallest X =3. Such twinning is very common in
metals, alloys, inorganic compounds and minerals. A
cubic crystal includes at least three twofold axes in
the (100) directions and four threefold axes in the
{111) directions. If twinning occurs in one of the (111)
directions, it will appear in the other three directions,
therefore both a matrix and its twins have a T, sym-
metry; we then call the matrix a T, polyhedron.
Consequently the T, polyhedron and its twins are
called building blocks.

2.1. Symbol to describe a building block

We can choose a rhombohedral unit cell with a =
Kd [d is the edge of a tetrahedron and equal to
(3/2)"*d,,,] and a =60° from an f.c.c. lattice, as
shown in Fig. 1 with a=2d. A T, polyhedron can
be obtained by cutting the rhombohedron with two
planes perpendicular to its long diagonal; the spacing
between these planes is Kd,,,. However, there are
(2K +1) ways to cut it and (2K +1) different T,
polyhedra can be obtained. As shown in Fig. 1, for
example, we can cut the rhombohedral unit cell at
layers 0 and 2, at layers 1 and 3,2 and 4, 3 and 5, 4
and 6, and denote the resulting polyhedra by symbols
(2,0), (2,1), (2,2), (2,3), (2,4). Generally, we use
(K, L) to indicate a T, polyhedron, where K means
that the polyhedron has height Kd,,, in the (111)
direction, and L means that the polyhedron is
obtained by cutting the rhombohedral unit cell at the
Lth and the ( L + K)th layers. Then we see that (K, L,)
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2 COINCIDENCE SITE LATTICES

is equal to (K, L,) but they have opposite orientations
for L,=K-i L,=K+i, i=0,1,2,..., K. For
example, (2,1) as well as (2,3) are truncated
tetrahedra; however, a hexagon of (2,1) is in the
[111] direction, and that of (2, 3) is in —[111]. Now,
one can easily see that (1, 0) is a tetrahedron, (1,1)
an octahedron, (2, 0) the tetrahedron with edge = 2d,
(2, 2) the octahedron with edge =24 etc.

There exist twins with composition plane {111} in
a complicated c.c.p.-related crystal. One can use
(K, L, P) to represent a (K, L) polyhedron with four
twins of P atomic layers parallel to the-{111} lattice
planes. We use (K, L, P,Q) or (K,L,P,Q,S) to
denote a (K, L) polyhedron with second-order or
third-order twins, where Q and S denote the numbers
of the layers of the twins. Models of the building
blocks (1, 0), (1, 1),(2,0),(2,1),(2,2),(2,0, 1), (3, 0),
(1,0,1,1,1), (1,0,1), (1,2,1), (1,1,1), (1,1,1,1),
(1,1,1,1,1), (3,0,1), (2,1,2), (4,1,1), (4,5,1),
(4, 3,1) are shown in Figs. 2(a)-(g).

2.2. Calculating the atomic positions of a building block

2.2.1. The formula for a (KL) polyhedron. Let axes
a,, a,, a; of a cubic unit cell be transformed into d,,
d,, d; of a rhombohedral unit cell. Then

d,=(3/2n)(a,+a,) (2.2.1a)
d2=(3/2n)(83+a,) (22.1b)
d;=(3/2n)(a,+a,) (2.2.1¢)

where n is the number of atomic layers parallel to
(111) from [000] to [111].
Consequently, we obtain

a=n(2"%d/3 where d =|d,|. (2.2.2)

This formula is a fundamental one in c.c.p.-related
structures, and it was empirically derived earlier
(Andersson, 1980).

In matrix notation, (2.2.1a) to (2.2.1¢) can be com-
bined as

d, 3 0 1 1\/a
d; ='2—'; 1 0 1 a
d; 1 1 0 a3

Fig. 1. Construction of T, polyhedra.

m,, m; are integers; then

X 3 0 1 1\/m,
z 1 1 0/\m,

This formula can be used to calculate all the coordin-
ates of a (K, L) polyhedron by choosing suitable
integers m,, m,, m;. But, in this case, the centre of
the (K, L) polyhedron does not coincide with the
origin of the cubic unit cell. It would be better to put
the center of the (K, L) polyhedron at the origin of
the cubic unit cell. Translate the (K, L) polyhedron
a distance (K + L)(3/4)d(2/3)"? along the —[111]
direction, then we get

N\ Sfo221 :‘
yl=l2 02 1 mj (2.2.3a)
z 2 2 01
m,
where
my=K+L
O0=m=K i=1,23

L=m+m,+my<m,.

A Friauf polyhedron is different from a truncated
tetrahedron. For a Friauf polyhedron, there is no
atom at the center of hexagons, but there are atoms
inside it and out from the hexagons. Therefore, m;
(i=1,2, 3) have to satisfy more conditions to exclude
the atoms at the center of the hexagons of a Friauf
polyhedron, namely

odd: m; not all odd

m, + m2 + m3 = {
even: m; all even.

Thus 111, 311, 511, 331,...are forbidden number
groups by the first condition and 013, 123, ... violate
the second condition, while 002, 024, . . . are permitted
number groups.

However, in order to include the atomic coordin-
ates at the center of a Friauf polyhedron and outside
the hexagons of a Friauf polyhedron, we have to
choose m;(i=1,2,3)=o0dd first, and then calculate
x, , z from (2.2.3a); then

333
! ! ! -— + = 2.
(xiyizD)=(xy2) (4" an 4n) (2.2.3b)
Pyl 2y = - iii
(x2y223)=(xyz) (4n i 4n) (2.2.3¢)

are coordinates of the center of a Friauf polyhedron
and outside the hexagons of a Friauf polyhedron.
All these conditions are obtained by an inductive
method.
2.2.2. The formula for a twin part of a building block.
Let a cubic crystal be reflected by the (111) lattice
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plane through the origin; then
X _

1 1 2 N\ /x
Y =3 21 2y (2.2.4)
y4 2 2 1/\z

where xyz are the coordinates of the matrix, and XYZ
are those of the twin (Grimmer, Bollmann & Warring-
ton, 1974).

If the mirror plane (111) is translated (K + L)X
(1/4)(2/3)"/?d along the [111] direction, then

x\ (82725 :‘
vi=—-{2 8 25 mz (2.2.5)
y4 2 2 8 5
my
where
my=K+1L

0=m(i=1,2,3)=K
m4"P5 m1+m2+n135 m4—1.

If P=1 then m,+ my+ my=m,—1. Usually, P=1.
For a Friauf polyhedron, m,(i=1,2,3) in (2.2.5)
have to satisfy more conditions which are exactly the
same as for (2.2.3a).
The formula for a crystal is as follows:

- m‘
X U 0 2 21 m Xo
v|==={2 0o 2 T|[ ?|+[»]| (2.2.6)
4n i ms
V4 2 2 01 2
my
for a (K, L) polyhedron, and
~ = = m,
X U 8 2 2 5 m Xo
Y|l==(2 8 2 5| *|+|[»] 227
4n\- - = ms
z 2 2 85 2
my

for the twin part of the building block, where x,y0Zo
are coordinates of the center of a building block in
a crystal and U, is a symmetry matrix (i=1,2,3,4),
with

1 00 100
u=(o 1 0], U=[0oT1 0}
0 01 0 0 1
1 00 1 0 0
U,=[0 0 1}, Us=[0 0 1}
010 010

U, and x,y0z, depend on the space group, and are
given in Table 1. (xo¥o02o) is the complex with 23 or
43m symmetry.

We can conclude from Table 1 that:
_ 1. All of the space groups in Table 1 include 23 or
43m symmetry.

2. The space groups P23, 123, Pn3, P4,;32, P43n,
P3a3m, 143m and Pn3m contain two building blocks,
which are located around (000) and (333). The space
groups P23, 123 and I43m have the same XoyoZ, and
U,, but their building blocks difter. Two building
blocks of P23 are independent and different from
each other; however, those of I23 are the same. The
XoYoZoand U; of 123 and T43m look exactly the same,
but 123 is one of the subgroups of 143m. The building
blocks of I43m have higher symmetry than that of
I23. A similar relationship exists between space
groups Pn3 and Pn3m.

3. Fm3, F432 and Fm3m consist of eight building
blocks. Fm3 is a subgroup of Fm3m although they
have the same U, and x,yo2o.

4. The space groups Fd3, F4,32, F43c and Fd3m
consist of 16 building blocks in two different types.
Fd3 and Fd3m have the same U; and xgy,z,, but
Fd3 is a subgroup of Fd3m. _

5. The space groups F23 and F43m consist of 16
building blocks in four different types; F23 is a sub-
group of F43m.

6. A group and its subgroup can consist of the
same building blocks. In that case, the supergroup
probably consists of homogeneous atoms and the
subgroup of heterogeneous atoms, or a small atomic
displacement occurs in the subgroup. All the group-
subgroup relationships have been given in Fig. 3.

7. The space groups in Table 1 are divided into
two types. Group type II can accommodate all of the
building blocks; however, group type I can accom-
modate only building blocks which have special
positions such as x00, xx0, xxx, xxz, and cannot
accommodate the coordinates xyz. If group type I
includes general positions xyz, they must have other
positions xzy at the same time, which is not given in
Table 2.

2.3. The coordinates of a building block

All of the coordinates of a building block are given
in Table 2. Since n in (2.2.3a,b,c) and (2.2.5) depends
on the crystal structures, we give only 4nx, 4ny, 4nz
and 4nX, 4nY, 4nZ (1,1,t;), which are independent
of the crystal structure. The coordinates in Table 2
have to be divided by 4n when the coordinates of the
atoms in a crystal are calculated. Table 2 only gives
the coordinates of building blocks which appear very
often in a crystal. For simplicity, we assume that a
building block has the following symmetry elements:

Xyz yzx zxy Xzy zyx yxz
xyz yzIX zXy XZy zyxX yxZ
XyZ yzX zxy Xzy zZyx yxZ
Xyz yIx Xy XZy Zyx yxz

Only independent coordinates are given in Table 2.
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Table 1. U, and xop,z, for 17 space groups

Space  Number of
Space  group complex Complex 1 Complex 2 Complex 3 Complex 4
group type sets matrix matrix matrix matrix Remarks
P23 I 2 000 i
U, U,
F23 I 4 000 034 0 40 TR R ER Y 144 100 040 00} R II R
Ul U| U\ Ul
123 1 1 000 it
Ul
Pn3 1 1 000 14
U, U, Origin at 23
Fm3 I 1 AU IR ULl
Y, U,
Fd3 1 2 000 of} {0 dio {if 431 34 3 14 Joo olo oo 133 iif 13 i
U, U, U, U, Origin at 23
P4,32 1 1 000 i3
Ul Ul
Fa32 1 1 W L U N
Ul UJ
F4,32 1 2 000 04} 304 310 1if §% 3f i3 144 Joo ojo 0o} i3 ii4 13 i
_ Ul UJ Ul k]
P43n I 1 000 i
U, u,
Fi3c ! 2 000 of} lof 1io 114 oo ojo 00} HEEPHIE BN GV
_ Ul U, U| Ua
Pa3m 11 2 000 i
U, U,
Fa3m 1 4 000 04§ joj {10 Wit it 144 100 ojo 00; 4
- U U, U, U,
133m 1 1 000 i
U, U,
Pnim 1 1 000 (33!
U, U,
Fm3m 1 1 PRI R R LR R IT R ERTH
U, U,
Fd3m 1 2 000 04} Joj 130 4id 431 34 di 111 100 ofo 003 333 il 4 443
U, U, U, U, Origin at 43m

The group type I does not have such high symmetry.
Its symmetry elements are only the left half of the
group type II. There is no difference between the two
types of space groups for the positions such as x00,
xx0, xxx, xxz. It can be seen that most of the building
blocks in Table 2 satisfy this except the building
blocks (2,2,1), (4,3,1), (4,5,1), (4,7,1) and
(2,0,1,1,1). Coordinates such as xyz of a building
block have to be divided into xyz and xzy in group
type I as mentioned in § 2.2.2.

The coordinates of the building blocks (1,1, 1, 1),
(1,0,1,1) (1,0,1,1,1) having higher-order twins
cannot be calculated by (2.2.3a) and (2.2.5) and we
have to use other formulae which are much more
complicated than (2.2.3a) and (2.2.5). This is not
described in this paper.

The coordinates of the second-order twin of the
building block (1,0,1,1) would be (1/31/331/3),
according to the rigorous second-order twinning for-
mula if the factor 1/4n is omitted. The coordinates
(1/31/331/3) can be obtained from (1/31/331/3)
in terms of symmetry operations. These two positions
of (1/31/331/3) and (1/31/331/3) are very close
together. The distance between them is 0-9428 which
is much shorter than the edge (8-485) of a tetrahedron,
namely 11% of a tetrahedron edge. The average of
the coordinates of these two positions is (0031/3)

which is very close to the coordinates (00 31-045/3)
of the vertex of the capped triangle (Nyman &
Andersson, 1979) on the edge of the central tetrahe-
dron of a stella quadrangula.

In common with the building block (1,0, 1, 1), the
coordinates (80/980/913/9) of a building block
(1,0,1,1, 1), which are very close to the coordinates
(80-091/9 80-091/9 13-045/9) of the vertex of the cap-
ped triangle on the edge of the outer tetrahedron of
a stella quadrangula, are the average of the coordin-
ates (77/983/9 13/9) and (83/9 77/9 13/9) which are
calculated by the formula of the third-order twin.
Similarly, the coordinates (9/39/340/3) are the
average of (8/310/340/3) and (10/38/340/3).
Stereoview pictures of the building blocks
(1,0,1,1,1) are given in Figs. 4(a) and (b). It can
be seen that some pairs of atoms of the second- or
third-order twins are so close together that they have
to be replaced by one atom at the middle of these
two atoms. Now, we can easily realize that, in fact,
a building block (1,0,1) is a stella quadrangula;
(1,0,1,1) the triangular capping of a stella quad-
rangula; (1,0,1,1,1) a double triangular capping,
and (1, 1, 1, 1) an octahedral capping pyrochlore unit
(Andersson, 1978). All of the twins of building blocks
in_Table 2 share atoms in the (111), (111), (111),
(111) lattice planes with a central T, polyhedron. Of
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(¢)

Fig. 2. (a)-(g) Models of building blocks used to describe c.c.p.-related structures.
[ To face p. 4
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(d)

(e)

Fig. 2 (cont.) (d) (e)
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(N

Fig. 2 (cont) (f) (g)
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PLATE 4

Fig. 5. The structure of SiF;.
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Table 2. The coordinates of building blocks

course, the twins of a building block can share atoms
in the (111), (111), (111), (111) lattice planes with a
T4 polyhedron as well. We use (K,L,P,Q,S) to
denote the former, —(K, L, P, Q, S) the latter. The
coordinates of the building block —(K, L, P, Q, S) are

just the negative of the (K, L, P, Q, S) coordinates so

192 Fd3m Fm3im

96 Fd¢3 Film F432 Pn3m Fm3 F432 43c
48

24 123

12 P23

Fig. 3. Group-subgroup relationship among 17 space groups.

Building Building
block mymymy and coordinates (1, t,15) (1, =4nx or AnX, t,=4ny or 4nY. 1;=4nz or 4n2) block m,m,m, and coordinates (1,1,r,) (1, ~4nx or 4nX t,=4ny or 4nY. t,=4nz or 4nZ)
mymgmy [ 0 0 0 m‘mzmzouhﬂﬂl 220 [hrtthat
(.0 tepty| 000 “UF g ]99B]333|3s 9 fooo fEE
mnm (000 mmm Joosloos|zzr i el oow
0.0 2 3 CRIILAN R N . N
, ttty| 153 ot tty (997333131339 looo BEE wmofizizo {5517 7177
mmm |000 000"’ mmm 00 4{1 04223 (222 [1t11]331
(1,0, B (4,3)F 123 - N
= ISUIEREIEEE ’ Gty (332113975993 333 BEE[oon
m.mzm}llu m|m2m100‘10‘l213272‘|V3}|02“117})V‘|||.
TR tyrgty |00 6 (4,3,1)F tee3378]393[993 3y BEEjovnianT i fsers 121212(1818 &
'"l'"z"‘;"ﬂ 001" M,m2m31)1131722 224 b |32
(1,1 (4,5)F 3
ll(zl3006 882 tytyty 1200 666|333 (993 3321|3918
SOCE 1 e [133]333|222 224 Jusius2facofz2u333]331
(1,2) v PR R cos -
. Lt 333 s Gty 12006661333 1993 33213 9155529017175 [21212{101022
. mlmzmlllllloﬁ mymgms 11 333 (226 [ve2 uus
(1,2, fegy 133|550 (L. 7)F tfoeoleselsssfiss s
mmm (000[1 10 mmm (101333 220 [ea2 fuusfew 2l
(2,0) 123 w70 |23 .
. £ty EEE{ao0é6 o ttyty [002}666 g 3315 9 915[111123
m]mzm3 aoof(1lrojoo ". n\‘mzm5 000 o&|0 221 1 |~ 111
200 o) 666 00s (882 (5:00F e 3539905333 535 oo 666
m m,m. 11100 2 m m m. 000|004 2 n |{||I-|IV‘|‘3‘.770*GDH4
2,0 113 = (5,0.0F | V23|20 _ N
: Gty [3331339 540, gty [31513) 9995(3 315 339 poo|8EE|0m0fiziz0 |5 51717177
mymgmgf 11|00z | o oo mymymy (0001000000
@1 Gty 333|338 55T OOt oG 333 sss|eonn
mmpmy |V 1oz fiio ooz roo mymymy [V 1 afoon oo o
(z.1.2) Lty 333 339 s pint [pang aan ity 006|882 '35";"; %93"50
mmgn [ 10420 220 mmymy [0 00100 001 oo o0’
(2,2) (2.0.1,1 61646 (9 9 40
ttpty000j066 0012 4ty €EE&|aoe 882.’33333
m m,m K m_m,m. ocpoj110f{001
2™3
(2.2'|) Y23(rrap3vrf220 v o (2'6‘1"—'1 1
tegtysoc]ose oo fans baw £ty EE6|006|88B2 [2214101016/8 B14[16166 141414
; & iy
mmty 11220 (1,0,1,1,1 ] P R U ;0800101
(2,3) 3137 T L1333 ssslo0 § NS
ttty[333]339 123 3[999
= r =
m‘mzm]nlzz\zzu"'vz . mmms 111 111|002
2,3,1) Gy [T35[3s s (s s & iyt |000[666(333
MMy 222{22" 2.00r h‘nzm) Ty f221
(2.8) tytyty 666|006 o3 Lty ooo|888|339
n = 7
mymmy |2 22 )2 221 12 F Pyt 1T T11002 po2ipon
2,4,1) eyt s66loos|e s L lllll’ 000l666|33F 11T pa3y
mmmy o 00foaz2fiaa " Pimmy | 122|033 (123 p22 g
0.0 e 355153813 33 (aty |60 0jBoafize 0 Bee FEE
mmpmy oo afoo i [ o2
B0 e 598[338[533 sunnr

that we do not show them in Table 2. The building

block (K, L, P, Q, S) means that the twinning plane
of the twin P is the (111) lattice plane and that of
the twin Q is —(111), so that the orientation of the
twin Q is the same as that of the central T, poly-
hedron.

Those with the letter F consist of Friauf polyhedra.
The symbol * means first-order twin; ** second;
*** third. 1117 and 1117 means that t
(4nx}, 4ny}, 4nz, or 4nx5, dny;, 4nz3) are calculated
by (2.2.3b) and (2.2.3¢) respectively.

3. The description of a c.c.p.-related structure in terms
of a building block

3.1. SiF,

SiF, is cubic, space group 143m, a=5-41A. It was
shown in Table 1 that a crystal of I43m includes two
building blocks of the same type; one is around (000),

the other around (11}).
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Table 3. SiF,, cubic, a=5-41 A, space group 143m

Exper'mental Calculated Building
Atomic coordinates coordinates Calculated block
position x y z x y z [P P m, my, my symbol n U Xo Yo Zo ad (A)
28iin(a) 0 0 0
. -5 -5 -5 0o o0 o0 -(1,0,1) 4 U IR
17 17 . . . . (el 1 2
8Fin(a) 01 01 0-17 0-1875 0-1875  0-1875 3 3 3 00 0 ~o.n 4 U, 000 0164
Table 4. a-Mn, cubic, a =889 A, space group 143m
Experimental Calculated Building
Atomic coordinates coordinates Calculated block
position x y z x y z 4yt 3 mpmymy symbol n U  xopz A4d(A)
2 Mn(1) in 2(a) 0 0 0 0 0 0 0 0 0 [ -(2,1,2F 8 U, 000 0-000
8 Mn(2) in 8(c) 0-31787 0:31787 0-31787  0-31250 0:31250 0:31250 6 6 6 111 -(2,1,2)F B U, i b 0-083
24 Mn(3) in 24(g), 0-35706 0-35706 0-03457  0-34375 0-34375 0-03125 11 1 1 00 2° -(2,1,2)F 8 U, 000 0-170
. P kI 00 1° -(2,1,2)F 8 U [T .
24 Mn(4) in 24(g), 0-08958 0-08958 0-28194  0-09375 0-09375 0-28125 3 3 9 00 2 (. 1,2)F 8 U 00 0 0-053

SiF, consists of two —(1,0, 1) building blocks as
shown in Table 3. The Si atom is located at the center
of the central tetrahedron of the —(1,0, 1) building
block forming a strong Si-F bond, bringing the F
atoms closer together so that the edge of a central
tetrahedron is shorter than that of the outer ones. The
edge of a central tetrahedron is 2:601 A, and that of
the outer ones is 2:969 A. The building block around
(000) shares an atom with that around (311), i.e. the
atom at the vertex of an outer tetrahedron of —(1, 0, 1)
at (000) belongs to the central tetrahedron of
—(1,0,1) at (1i1). The deviation of the calculated
atomic positions from the experimentally determined
positions is 0-164 A. The average F-F distance is
2-869 A. The average percentage of the atomic devi-

(b)
Fig. 4. (a) Stereoview of building block (1,0,1,1,1). (b)
Stereoview of building block in y-brass.

ation (APAD), Ad/d, is 5-7. The structure is shown
in Fig. 5.

3.2. a-Mn

a-Mn (Oberteuffer & Ibers, 1970) is cubic, a =
8-89 A, space group I43m. It can be seen from Table
4 that the building blocks located at (000) and (331
are —(2,1,2). They each share three atoms, whose
coordinates are (0-08958 0-08958 0-28194), (0-08959
0-28194 0-08958) and (0-28194 0-08958 0-08958). The
deviation of the positions 8(c), 24(g),, 24(g), from
the experimental positions are 0-083, 0-170 and
0-053 A respectively. The average interatomic dis-
tance of Mn is 2:3573 A. The APAD of a-Mn is 4-4.
This description of a«-Mn in terms of a —(2,1,2)
building block is quite accurate and is the same as
used by Samson (1964).

3.3. y-Brass

vy-Brass (Brandon, Brizard, Chieh, McMillan &
Pearson, 1974) is cubic, a =8-878 A, space group
I43m. Bradley & Jones (1933) have described y-brass
in terms of clusters, each containing 26 atoms. Nyman
& Andersson (1979) have described it as doubly
triangle-capped stella quadrangula. From Table 5, one
can find that y-brass consists of two building blocks
—(1,0,1, 1, 1) located around (000) and (111). In fact,
three different descriptions lead to the same result.
However, it seems that the method in terms of the
building block —(1,0, 1, 1, 1) has more relationships
with other structures and building blocks and it is
physically more meaningful. The APAD of y-brass
is 4-2. A model of the structure is shown in Nyman
& Andersson’s (1979) paper, using the same building
block unit (1,0,1,1,1).

3.4. Fe;W,C

Fe;W,C (Bojarski & Leciejewicz, 1967) is cubic,
a=11-087 A, space group Fd3m. The crystal of this
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Table 5. y-Brass (CusZny), cubic, a=8-878 A, space group 143m

Experimental Calculated Building
Atomic coordinates coordinates Calculated block
position x y 2 x y z L L momym, symbol n U xyz A4d(A)
IT 8(c) (xxx) 0-1089  0-1089  0-1089 0-1071 01071 0-10M1 3 3 3 000 -(1,0,1,1, 1) 7 U, 000 0-0277
OT 8(c) (xxx) -0-1720 —0-1720 -0-1720 —0-1786 —0-1786 -0-1786 3 5 5 0 0 0° -(1,0,1,1,1) 71 U, 000 0-1015
OH 12(e) (x00) 0-3558 0 0 0-3690 ] 0 3173 0 0 0 0 o** -(1,0,1,1,1) 7 U, 000 01172
CO 24(g) (xxz) 0-3128 0-3128  0-0366 0-3175  0-3175  0-0516 80/9 80/9 13/9 0 0 0*** -(1,0,0,1,1) 7 U, 000 0-1457
Table 6. Fe;W;C, cubic, a =11-087 A, space group Fd3m
Experimental Calculated Building
Atomic coordinates coordinates Calculated block
position x y z x y z o, oty mymymy symbol n U  xy2 A4d(A)
16 Fe(1) in (d) H H i i i i 5 3 3 R -(1,0,1) 0 U 33
' s s s 000 oy 10 u, i3 0
32Fe(2) in (e) -0-1703 -0-1703 -0-1703 -0-1750 ~-0-1750 -0-1750 3 3 3 00 0 —~(1,0,1) 10 U, I I i_ 0-0899
48 Win (/) 0-1978 0 0 0-1875 0 0 ? 8 8 001 -(1,1.,1) 8 U il 0-1142
. 6 0 0 011 (1,1,1) 8§ U 0000
16 C in (<) i ! | i i i :
Table 7. Al,,V, cubic, a =14-516 A, space group Fd3m
Experimental Calculated Building
Atomic coordinates coordinates Calculated block
position x y z X y z oty mymyms symbol n U Xo Yo Zo ad (A)
96 Al (g) 0-0654  0-0654  0-3009 0-0682 00682  0-2955 3 3 -9 00 2 (2,)F 11 U, 00§ 0-0972
-8 -8 -2 00 1° (1,1,1) 1 u, j 3!
4B A () 0-1407 0 0 01364 0 0 6 0 0 110 -(1,1,1) 11 U, 0 00 0-0624
16 Al (d) i i i
16V (c) i i i
8 Al*(b) 3 i i 3 i i o 0 0 111 (2, )F 11 U, i1 0-0000

* Occupancy of these sites 0-10%.

space group consists of 16 building blocks of two
different types. One of them is around (000), (1!
and their face-centered related positions. The two
building blocks at (000), (111) have an inverse center
at (331). Therefore, they can be symbolized as
(KLL,P,Q,S) and —(K,L,P,Q S) respectively.
Those at (111) and (333) have an inverse center at
232). The building blocks at (000) and (1) can be
independent and different.

It has been shown (Table 6) that Fe;W,C consists
of two different types of building blocks (1,1, 1) and
(1,0, 1). The building blocks (1,1,1) and —(1,1,1)
located at (000) and (311) respectively share three
atoms. Their coordinates are (0-1978 0 0), (0 0-1978 0)
and (000-1978). The building blocks (1,0,1) and
—(1,0, 1) located at (311) and (323) share only one
atom, whose coordinates are (32). Fe;W;C has two
different values of n, namely 8 and 10, for the building
blocks (1, 1,1) and (1, 0, 1) respectively. The average
interatomic distance of (1,1, 1) is 2-9219 A, and that
of (1,0,1) is 2-3419 A. The reason that n for the
(1,1,1) building blocks is different from that for
(1,0,1) is that they consist of different atoms of
different sizes. The (1,1,1) consists of W atoms,
(1,0, 1) of Fe atoms. Carbon is located at the center
of the outer octahedron of the building block (1, 1, 1).
The APAD’s of the building blocks (1,1,1) and
(1,0,1) are 3'9 and 2'6 respectively. Co,;W,C and

Co,W,C are isomorphous structures of Fe;W,C. The
structure built with these two building blocks is shown
in an earlier paper (Nyman, Andersson, Hyde &
O’Keefle, 1978).

3.5. Al,V

Al,oV (Brown, 1957) is cubic, a=14-516 A, space
group Fd3m. The construction and distribution of
the building blocks of Al,,V (Table 7) is the same as
that of Fe;W,C. The building blocks (2,1)F and

—(2,1)F are located at (333), (332) respectively in the

unit cell of Al,,V. They have an inverse centerin (333)
which is also the center of a hexagonal prism formed
by two hexagons of (2,1)F and —(2,1)F. An Mg
atom is situated at the center of the hexagonal prism.
The building blocks —(1, 1, 1) and (1, 1, 1) are located
at (000) and (311) respectively. The (1,1,1) at (313)
shares three atoms at (0-06540-0654 0-3009),
(0-0654 0-3009 0-0654) and (0-3009 0-0654 0-0654)
with (2, 1) F at (00%). One V atom at (}11) locates the
centre of the icosahedron formed by the building
blocks —(1, 1, 1) and (1, 1, 1). The APAD of the build-
ing block (2,1)F and —(2,1)F is 3-2 and that of
(1,1,1)and —(1, 1, 1) is 3-5. Al,5Cr,Mg; is an isomor-
phous structure of Al,,V. The structure has been
described earlier by Nyman, Andersson, Hyde &
O’Keefle (1978).
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Table 8. Pyrochlore [(NaCa),Nb,OF]s, cubic, a =10-40 A, space group Fd3m

Experimental Calculated Building
Atomic coordinates coordinates Calculated block
posilion x y z x y z [T PR my; my m, symbol n U Xo Yo Zo Ad (A)
16 Nb in 16(d) H H H
8 F in 8(d) 0 0 0
. 3 3 3 000 -(1,0) 6 u 00 0O
] z - - ’ 1 0-0
16€ain 16(c) : | | : J | 3303 000 (1,0) 6 U, oL
. 2 8 8 0 0 1 1,1,1) 8 U, -i-1-4
48 O in 48(f) x(x;(”?o 0313 0-3125 0 0 P 0 0 011 (L1 8 u, 1 oo
0-322,0-330)
Table 9. Zunyite [Al,;Sis0,0(OH, F),sCl], cubic, a =13-820 A, space group F43m
Experimenial Calculated Building
Atomic coordinates coordinates Calculated block
posilion x y z x y z [ PR PR m, m, m; symbol n U Xo Yo 20 Ad (A)
4Clin (b) 1 i | i ! i 0o 0 o0 000 (0,0) 1y, IR
4Silin (c) i : :
16 Sill in (e) 0:1143  0:1143  0-1143  0-1136  0-1136  0-1136 0-0168
4 All in (d) H H 1 3 H H
48 Alll in (h) 0-0853  0-0853 -0-2333
. 8 8 8 111 -221) u U 000 :
160l in (e) -0-1750 -0-1750 —0-1750 —0-1818 —0-1818 -0-1818 3 1 3 00 o @ nou 111 01628
16 OIl in (e) 0-1818 01818  0-1818 0-1818  0-1818  0-1818 3 3 3 000 -(1,2,1) 11 U, 11 0-0000
. 1 Ton 00 2¢ (2,1,1) noou, -t
. . -07.
240111 (OH,F) in (/) 0-2780 0 0 02727 0 0 2 0 o 0 2 2 22 noou 00 0 0-0735
4 8 2 21 0* -(2,2,1) n v 1o}
4801V (OH,F)in (h) 01793 01793  0-5466 01818 0-1818 0-5455 _3 -3 9 00 1 2110 1nou, [ 0-0514
-5 -5 1 (2.1,1) 1n oy, Lot
480V (OH,F)in (h)  0-1385 0-1385 00003  0-1364 0-1364 0 6 6 0 311 -(2,2,1) n v 000 0-0413
-5 -5 -1 113 -(1,2,1) n v, 14

3.6. [(Na,Ca), Nb,O4F]; (pyrochlore)

This compound (Perrault, 1968) is cubic, space
group Fd3m as Fe;W;C and Al,,V, a =10-4 A. From
Table 8, building blocks —(1, 0) and (1, 0) which are
occupied by Ca atoms and centered by F atoms are
located at (000) and (43%). The oxygen constitutes
building blocks (1,1,1) and —(1,1,1) which are
located at (343) and (333) respectively. The Nb atom
is situated at the center of the outer octahedron of
(1,1,1) and —(1, 1, 1). The n of building block (1, 0)
is 6, and that of (1,1, 1) is 8, because they are con-
structed by different atoms, namely calcium and oxy-
gen respectively. Building block (1,0) is an ideal
polyhedron, and the APAD’s of (1, 1,1) and —(1, 1, 1)
are 0-2, 0-02, 0-9, 1-3, 6-5 for five different pyro-
chlores.

3.7. Zunyite

Zunyite [Al}3Si50,0(OH,F),5Cl] (Kamb, 1960) is
cubic, a=13-820 A, space group F43m. the crystal
of F43m consists of 16 building blocks of four
different types located at (000), (311), 311), 3232) as
well as their 12 corresponding face-centered related
positions. From Table 9, building blocks —(2,2, 1),
—(1,2,1), (0,0) and (2, 1, 1) in zunyite are located at
(000), (333), (333) and (333) respectively. The (2,2, 1)
is the building block originally used by Pauling to
describe this structure, while (2,1,1) is the well
known Keggin unit. The oxygen positions constitute
quite regular building blocks (2,1, 1), —(2,2,1) and

—~(1,2,1) whose APAD’s are 2:4, 2-2 and 1:2 respec-
tively. 4 Sil in (c) are located at the center of a central
tetrahedron of a building block —(1,2,1). 16 Sill in
(e) are located at the center of a tetrahedron of the
twin part of a building block —(2, 2, 1). Chlorine is
surrounded by 18 oxygens and the average inter-
atomic distance between O and Cl is 3:452 A which
is much longer than the distances of both Si-O and
0-0. 4 All in (d) are in the centers of tetrahedra in
the truncated tetrahedra of (2, 1, 1). 48 Alll in (h) are
in the octahedra of the twin part of (2,1, 1). 48 AllI
form a truncated tetrahedron (2, 1) with n = 8-25.

We conclude that oxygen constitutes the framework
of building blocks —(2,2,1), —(1,2,1) and (2,1, 1).
Building blocks —(2,2,1), —(1,2,1) and (2,1,1)
share atoms with each other. —(2,2,1) and (2,1,1)
share all the atoms with each other, and —(2,1,1)
share most of the atoms. The APAD’s of the —(2, 2, 1),
—(1,2,1) and —(2,1, 1) blocks are 2-2, 1-2 and 2-2
respectively.

3.8. MgMRh7 and N36T1
Mg, Rh, (Westin & Edshammar, 1971) is cubic,

a=20-110 A, and has the space group F43m as for
zunyite. The assembly rule of building blocks in
Mg.Rh; is similar to zunyite. Building blocks
(1301 la 1¢ l)s _(19 13 1: 1)’ (33(), 1) and (1,0, 1; 13 1)
in Mg, Rh; are located at (000), (31%), (311) and (333
and their 12 corresponding face-centered related posi-
tions, as shown in Table 10. They share atoms with
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Table 10. Mgy, Rh,, cubic, a=20-110 A, space group Fa3m

Experimental Calculated
Atomic coordinates coordinates
position x y z X y z
24 Rh(1) in 24(g) H i 0-5867 i 4 05655
16 Rh(2) in 16(e) 0-0833  0-0833  0-0833 0-0893  0-0893  0-0893
16 Rh(3) in 16(e) 0-3488  0-3488  0-3488 03393 0-3393  0-3393
48 Mg(1) in 48(h) 0-0525  0-0525 0-3380  0-0536 0-0536  0-3393
48 Mg(2) in 48(h) 0-1072  0-1072  0-2141 0-107t  0-1071  0-2143
X 0-1963 01963  0-4821
48 Mg(3) in 48(h) 0-1949  0-1949  0-4806 01964 01964  0-4881
0-0913  0-0913  0-7242 ~
4 i o o N
8 Mg(4) in 48(h) 0:0961  0:0961  0:7206 00893  0-0893  0-6964
. 0-1587 01587  0-9742
48 Mg(5) in 48(h) 0-1565  0-1565  0-9795 01548 01548 09761 —
24 Mg(6) in 24(g) 1 ! 0-3553 i 1 0-3571
24 Mg(7) in 24(f) 0 0 0-1824 0 0 0-1845
16 Mg(8) in 16(¢) 06956  0-6956 0-6956  0-6965 06965 0-6965
16 Mg(9) in 16(e) ~ 0-8338  0-8338  0-8338  0-8393  0-8393  0-8393
16 Mg(10) in 16(¢)  0-5618  0-5618  0-5618  0-5535  0-5535  0-5535
16 Mg(11) in 16(e)  0-9476  0-9476  0-9476  0-9465  0-9465  0-9465

Table 11. NagTl, cubic, a
Experimental Calculated
Atomic coordinates coordinates
position x y z x y z
Na48(h), xxz 0-14228 0-14228 0-03346  0-14286 0-14286 0-03571
Nad8(h), xxz 0-08984 008984 0-26791 gfg:f;‘; g:gz:;; g;;;:; _
Nadb(h), xxz 005604 005604 07942 oo 0% P
Na48(h), xxz 0-15395 015395 0-52856  0-15873 0-15873 0-52579
Nad8(h), xxz 0-19809 0-19809 0-90985 019643 0-19643 0-91071
Na24(f) x00 0-10858 0 0 0-10714 0 ]
TI24(f)  x00 0-33516 0 0 0-31548 0 0 -
Na24(g) xi} 0-06815 i 1 0-06548 i i -
Nal6(e), xxx 0-30267 0-30267 0:30267  0-30357 0-30357 0-30357
Nal6(e), xxx 041542 0-41542 0-41542  0-41071 0-41071 0-41071
Nal6(e); xxx 0-55549  0-55549 0-55549  0-55357 0-55357 0-55357
TI6(e), xxx 0-67234 0-67234 0-67234  0-64286 0-64286 0-64286
TI16(e), xxx 016755 0:16755 0-16755 0-16083 0-16083 0-16083
Ti16(e); xxx 090136 0-90136 0-90136  0-89285 0-89285 0-89285
Void 4d 11 1 It 3 v 1 3

H H B h B

each other. For instance, (1,0,1,1,1) around (000)
and —(1,1,1,1) around ({il) share three atoms,
(0-15650-1565 —0-0205), (0-1565 —0-0205 0-1565)
and (—0-02050-15650-1565). Building block
—(1,1,1,1) around (i1) is connected to building
block (3, 0, 1) around (003) and they share three atoms
(0-1949 01969 0-4806),  (0-1949 —0-4806 —0-1919)
and (—0-4806 0:1949 —0:1949). The building block
(3,0,1) around (00}) is in contact with (1,0,1,1,1)
around (333 and shares three atoms
(0-0961 0-0961 0-7206), (0-0961 1-7206 0-0961) and
(1-7206 0-0961 0-0961). The APAD’s of building
blocks (1,0,1,1,1), —(1,1,1,1), (3,0,1) and
(1,0,1,1,1) are 2-9, 5-0, 2-5 and 8-6 respectively. The
APAD of the building block (1,0, 1, 1, 1) around (3131
and that of (1,0,1,1,1) around (322) are quite
different, because they are independent of each other,
and have no related symmetry.

Na¢Tl (Samson & Hansen, 1972) is not isomorphic
with Mg, Rh;, but very similar. NasTl has building

blocks (2,0,1,1) and (2,1, 1) instead of —(1,1,1,1)

9
Building
Calculated block
h L mmymy symbol n u Xo Yo Zo 4d (A)
0 o -¥ 00 0 (101,11 14 U P 0-4271
S S s 00 0 (1,0,1,1,1) 14 U, 00 0 0-2094
9 9 5 00 o0 (3,0,1) 14U, ISR 0-3246
3 3 g 002 (3,0,1) 14U, 00 4 0-0366
8 (] 2 001 -(,1,1,1) 14 U, 14 0-0049
1mn i oo 2 (3,0,1) 14U 00 | 0-0500
-3 -3 2 00 1™ -(,LL1 14 U, 1L 0-1510
T -% Y 00 0 (01,1 14 U P 02653
5 s 11 11 0° (3,0,1) 4 U, 00 }
2 8 -2 00 0 (1,01,1,1) 14 U 00 1 ’
¥ & e 00 0 -0 4 u 4y 00
[} 0 6 110 -(1,1,1,1) 4 U, 14 0-0363
0 o 3 00 0 (1,0,1,1,1) 14 U 000 0-0484
3 3 3 000 (1,0,0,1,1) 14 U 1311 00314
5 5 s 00 0 (1,0,1,1,1) 14 U, IR 0-1919
3 3 3111 (3,0,1) 14 U Lo 0.2896
3 3 3 000 (1,0,1,1,1) 4 U, 111 0-0384
=24-115 A, space group F43m
Building
Calculated block
4 h ty mymym, symbol n U Xy 20 4d(A)
8 8 2 00 1* 2,0,1,1) 4 U 00 0 0-0578
Lo B 00 1+ (2,0,1,1) 14U 00 0 :
%g —"93 -z 00 o::' -(1,0,1,1,1) 14 U, I 0-2033
3 3 -2 o o‘ (2,0,1,1) 4 U, ? ? 0 01379
n 1 00 2 -2, 1,)F 4 U, P
e = 20 0 0 (1,0,1,1,1) 4 U, 0 0 } 0-1764
3 3 9 11 2¢ —(2,1)F 14 U, 141 0-2153
6 0 0 01 1 (2,0,1,1) 4 U, 000 0-0348
3 0 0 0 0 0* (1,0,1,1,1) 14 U 100 0-4753
¥ 0 0 00 0 -(,01,1,1) 14 U P 0-0645
3 3 3 000 -(Lo,1,1,1) 14 U, [ 00217
5 5 5 00 o0 (1,0,1,1,1) 14 U IR 0-1970
3 3 3 000 (1,0,1,1,1) 14 U, L 00720
& & 6§ 111 (2, L )F 14U, i1 1-23
5 5 5 000 -(1,01,1,1) 14 U P 0-2811
6 6 6 000 2,0,1,1) 4 U, (R 0-3589
0 0 0 000 -(2,1,)F 4 U, 11 0-0000

and (3,0,1) in MgyRh,. Building block (2,0,1,1)
in NagTl has one more atom (666) [i.e. TI(16) in (e),]
than the building block (1, 1,1, 1) in MgyRh;, and
(3,0,1) in Mg,Rh,; has one more atom (999) [i.e.
16Rh(3) in 16(e)] and one less atom (666) [i.e. T1(16)-
(e),] than NacTl. As a result, NasT1 has 15 indepen-
dent positions, iLe. one more independent position
than Mg, Rh,, and three different positions from
Mg.4Rh;, as shown in Tables 10 and 11. A model of
MgiRh, is shown in Fig. 2 of an earlier paper
(Andersson, 1978).

3.9. CU4Cd3

Cu,Cd; (Samson, 1967) " cubic, a =25-871 4,
space group F43m. It contains 1124 atoms in the unit
cell and it is one of the most complicated inorganic
compounds. The assembly rule for the building blocks
of Cu,Cds; is similar to zunyite, Mg,,Rh; and Na,Tl,
but its unit cell is much bigger. The description of
Cu,Cd; is very simple in terms of building blocks in
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Table 12. Cu,Cd,, cubic, a=

Experimental Calculated
Atomic coordinates coordinates
position x y z x y z
1Cu 96(i), 01018 01714 04662  0-1022 0-1705  0-4659
2Cu 96(i), 00036 01362 02256 00000 0-1389  0-2222
02159 0-2159  0-0795
C 48(h 0-214; -2142 0-
3Cu (B), 02142 021 0813 o922 02222 00833
4Cu 48(h), 0-1476  0-1476  0-0784  0-1477  0-1477  0-0795
SCu 48(h), 0-0560 0-0560 0-1683  0-0568 0-0568 0-1704
6Cu 48(h),  0-1138 01138 02499  0-1136 0-1136  0-2500
7Cu 48(h);  0-0339 0-0339 02604  0-0341  0-0341  0-2613
8Cu 48(h), 02157 02157  0-3517 02157 02157  0-3522
9Cu 48(h),  0-1931 01931  0-4424  0-1932  0-1932  0-4432
10Cu 48(h),  0-1026 0-1026  0-5335 01023 0-1023  0-5335
11Cu 48(h),, 0-1793  0-1793  0-5474  0-1798  0-1798  0-5482
123Cd+1Cu 48(h),, 0-1060 0-1060 0-8117  O-1111 O-1111  0-8055
13Cd 48(h),, 0-0663 00663 0-7043  0-0681 0-0681  0-7045
141Cu+iCd 48(h);, 0-1498 0-1498 07244  0-1447 0-1447 0-7237
153Cu+iCd 48(h),, 0-0354 0-0354 0-8091  0-0278 0-0278  0-8055
164Cu+iCd 48(h),5 0-2130  0-2130  0-9138  0-2105 02105 0-9254
17Cd 48(h),, 01119 01119 0979 01111  O-1111  0-9722
18Cd 24(f), 0-0876 0 0 0-0833 0 0
19Cd 24(f), 0-3635 0 0 0-3636 0 0
20Cu 24(g),  0-5006 i i
21Cu 24(g), 0-6793 i L 0-6710 i L
22Cu 16(e),  0-0744 0-0744 0-0744  0-0833 0-0833 0-0833
0-1818  0-1818  0-1818
23Cd 16 0-1815  0-181 -

(e 1815 01815 0 1044 01944  0-1944
24Cd 16(e);  0-3632  0-3632 0-3632  0-3636 0-3636  0-3636
25Cd 16(e),  0-4315 0-4315 0-4315 04318 04318 0-4318
26 Cu 16(e);  0-5346  0-53d46  0-5346  0-5340 0-5340  0-5340
27 Cu 16(e); 06262 06262 06262  0-6250 0-6250  0-6250
28Cu 16(e)g  0-8203  0-8203 08203  0-8289 0-8289  0-8289
29Cu 4(c) i { H 4 H H

Table 2. Building blocks —(2,0,1,1,1), (4,1,1),
—(4,5,1) and —(2,0,1,1) distribute around (000),
(351, (11y and (332) and their 12 corresponding
face-centered related positions respectively. The
APAD’s for them are 7-2, 1-2, 1-9, 6-9 respectively.
An obvious feature of this compound is that it has
three different n values for different building blocks.
They are 22 for (4,1,1) and —(4,5,1), 19 for
—(2,0,1,1) and 18 for —(2,0, 1, 1). The reason why
different building blocks have different n is that the
octahedron and tetrahedron for different building
blocks have a different composition of Cu and Cd.
The Cu atomic percentages of octahedra and tetra-
hedra in the building blocks —(4,5,1) and (4,1,1)
are 100; however, those of (-2,0,1,1) and
—(2,0,1,1,1) are 739 and 60-4 respectively. The
average Cu-Cu distance is 2-4945 A, and that of
Cu-Cd is 2:9750 A. The ratio of atomic distances of
Cu-Cd and Cu-Cuis 22:18-76. Therefore, the higher
the Cu atomic percentage of a building block, the
larger is n. This is also the reason why the APAD’s
of the building blocks —(2,0,1,1,1) and —(2,0,1,1)
are much bigger than those of the building blocks
—(4,5,1) and (4,1, 1). The interatomic distances in
the octahedra and tetrahedra of the building blocks
—(4,5,1) and (4,1, 1) are entirely Cu-Cu distances.

COINCIDENCE SITE LATTICES

25-871 A, space group F43m

Calculated Building
[ N block
9 15 3 mmym Xz U symbol n  Ad(A)
0 10 16 21 4 00 | U, —(451) 22 0-0266
i 3 0 000 U,  -(2,0,1,7,1) 18  0-1459
16 16 6 AR U, 4,1,1) 2
5 9 1 002 000 v, -oain s 003
7 O 7 001 i U, (4,1,1) 22 0-0286
s 5 B i (4,1,1)
S 440 00} U, 4s1) 2 00617
10 10 2 LI I 41,1
3 3 3 113 00} U, —451) 22 00078
3 3 9 00 4 00 } U, -(4,51) 22 0-0244
5 5 17 220 [P U, (4,1,1) 22 0-0149
17 17 3 P 4,1,1)
s 9 3 2 2 4 001 U, “51) 2 0-0210
i 223 [ U, -(4,51) 2 00110
8 8 14 PO U, -(2,0,1,1) 19 0-0276
6 6 18 00 1 U, -(2,0,1,1,1) 18  0-2460
g 8§ 2 00} U, 4,3,1) 22 0-0661
2 2 1 P U, -@,0,1,1) 19 01874
-3 -3 % 00 1 U, -(2,0,1,T,1) 18 02932
g8 8 2 Ll U, -(2,0,1,1) 19 03137
6 0 0 00 1 000 U, (2,0,1,1,1) 18 0-1936
2 o0 o 1o 000 U, -(2,0,1,1,1) 18  0-1926
113 IS U, -451) 22 0-0045
6 0 o
6 6 6 001 144 U, -(,0,1,1) 19 02121
6 & & 000 U, (2,0,1,1,1) 18 0-3988
4 14 14 L1 114 (41,1) 22 00134
2 127 12 000 v —(2,0,1,7,1) 18 0-5780
10 10 10 b -(4,5,1)
i 6 & 333 L1y U, @rL 2 00179
303 3 111 I U,  -4510 22 0-0134
1n 1 on 222 IS U, 450 22 00269
6 6 6 boiog U, (4,3, 1) 22 0-0518
0 0 o i3 U, -2,0,1,1 19 03719
111 L U, 4,1,1) 22

The deviations of atoms of these two building
blocks are, of course, very small. However, some
of the interatomic distances of building blocks
-(2,0,1,1,1) and (2,0,1,1) are those of Cu-Cd,
some are Cu-Cu. Of course, their deviations are much
bigger than those of —(4, 5, 1) and (4, 1, 1). Like other
compounds, the building blocks in Cu4Cd; share
atoms with each other. As shown in Table 12,
—(4,5,1) shares atoms 48(h),, 48(h),, 48(h), and
16(e), with (4,1, 1), and (4, 1, 1) shares atoms 48(h),
and 16(e), with —(2,0,1,1,1). (2,0,1,1) does not
share atoms with any building block, but atoms
48(h),0 0f (2,0,1,1) and 48(h), of (2,0,1,1, 1) con-
stitute icosahedra with 16(e)s of —(2,0, 1, 1) located
at the center of the icosahedra. A model of Cu,Cd,
was shown in Figs. 2 to 5 of Andersson’s (1980) paper.

3.10. GeyPglg

GesPsls (Menke & von Schnering, 1973) is cubic,
a=10-507 A, space group P43n. This space group
consists of two building blocks around (000) and
(333) of the same type. GessPglg consists of four
frameworks which are —(1,0,1), (1,0, 1), dodeca-
hedron and truncated octahedron as shown in Table

13. The centers of these frameworks coincide with
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Table 13. GesPsls, cubic, a =10-507 A, space group P43n

Experimental Calculated
Atomic coordinates coordinates
position x y z x y z
24 Ge(1) in (i) ~0-0009 0-1186 0-3072 0 0-1158 0-3032
8 Ge(2) in (e) 0-1842 0-1842 0-1842 0-1875 0-1875 0-1875
6Ge(3) in (c) 0 4 H
8Pin (e) 0-8152 0-8152  0-8152 0-8125 0-8125 0-8125
61(1) in (d) 0 4 i 0 3 i
21(2) in {a) 0 0 0 0 0 0

each other, so they interpenetrate each other. The
—(1,0, 1) framework is occupied by Ge, (1,0, 1) by
P. The two frameworks are located at (000) and (111).
As a result, the atoms of one framework are located
at the centre of the outer tetrahedron of the other,
but the central tetrahedron of these two frameworks
is occupied by an I atom. These two frameworks are
exactly the same as that of the F atoms in SiF,. In
addition, frameworks (1,0,1) and —(1,0, 1) can be
replaced by —(1, 2, 1) and (1, 2, 1) respectively since
they share all the atoms with each other. The third
framework is a dodecahedron which consists of
24 Ge(1) in (i) and building blocks (1,0,1) and
~(1,0,1). The integer n for building blocks (1,0, 1)
and —(1,0,1) is 4. The eight atoms of the central
tetrahedron of (1,0,1) and —(1,0,1) belong to a
dodecahedron. The positions of these eight atoms
which determine the rest of the dodecahedron were
calculated and are given in Table 13. The dodeca-
hedron of GesPgl; consists of 20 atoms, i.e. 16 Ge
and 4 P, and is centered by atom I.

The average interatomic distance between an I
atom and atoms on the dodecahedron is 3-41 A, and
that between atoms on the dodecahedron itself is
2-40 A. The coordinates of the nearest two atoms of
the two dodecahedra at (000) and (34%) respectively
are (0-1842 0-1842 0-1842) and (0-3152 0-3152
0-3152). The distance between these two atoms is
2-38A and very close to 2:40A. The fourth
framework is a truncated octahedron. Its centres are
also in (000) and (11!). The truncated octahedron
consists of four hexagons with edge = (2'/2/2)a whose
centers are at (353), (34%), (342) and (§3}) respec-
tively. The distance between the atom in the hexagon
and 24 Ge(1) in (i) is 245 A which also is very close
to 2:40A. The APAD’s of (1,0,1), (1,2,1),
dodecahedron and truncated octahedron are 1-8, 1-4,
2-2 and 0-0 respectively. It is concluded that this
structure is very close to an ideal model. P43n isa
subgroup of I43m. Ge,Pgl; will change into I43m
from P43n, if the coordinates of 24 Ge(1) in (i),
(—0-0009 0-1186 0-3072), are replaced by (0-0000
0-1186 0-3072), and 6 I(1) in (d) is replaced by 6 Ge.
Therefore, the chemical formula will change into
Ge.,Pgl,. But these two structures can be described

Building
Calculated block
[P PR N symbol n U X0 ¥o 2o Ad (A)
Dodecahedron 4 0-0499
-5 -5 -5 (1,0,1) U, LRI
3 3 3 -(1,0,1) 4 U, 000 0-0600
5 5 1 (1,2,1) U, [ R R
Truncated octahedron 4 0-0000
5 -11 -(1,2,1) U, 113
5 5 -(1,0,1) 4 U, . 0-0491
-3 -3 -3 (1,0,1) U, 111
Truncated octahedron 4 0-0000
Truncated octahedron 4 0-0000

by the same building blocks. Of course, P43n
is also a subgroup of Pm3n. The Ge;sP;l; will be-
come Pm3n if the coordinates of 8P in (e) of
GessPgly change into (0-81580-81580-8158) from
(0-81520-8152 0-8152) and 8 P atoms are replaced by
Ge. The chemical formula of Ge,3P;3l; will become
Geylg correspondingly. In fact, the assumed structure
is an isomorphous structure of Ge,K;, SnyKs,
SisNag, and GesPgBrg and GesgAsglg are isomor-
phous with Ge;gPgl5.

3.11. Li,VN,

Li;VN, (Juza, Geiren & Haug, 1959) is cubic, a =
9:60 A, space group P43n. It contains four
frameworks which are the building blocks (2,2),
(2,1), —(2,0) and truncated octahedra as shown in
Table 14. The dominant unit is the building block
(2,2). There exist three layers of atoms parallel to
the (111) lattice plane between (000) and (31!
because n = 6. Accordingly, the distance between two
surfaces of two building blocks (2,2) around (000)
and (333) is one atomic layer or the height of an
octahedron. These two surfaces constitute four
trigonal prisms; one is a central trigonal prism and
three are outer ones. Building block (2,2) has six
octahedra, eight tetrahedra and 32 trigonal prisms
around it. The six atoms at the vertices of the central
octahedron of building block (2, 0) are located at the
center of the octahedron of building block (2, 2). The
four atoms at the vertices of the outer tetrahedron of
building block —(2,0) are situated at the center of
the central trigonal prisms. The four N atoms at the
vertices of the central tetrahedron of building block
(2,1) are located in four of the eight tetrahedra of
building block (2, 2), but not at the center. The three
N atoms at the vertices of the triangle of building
block (2, 1) are located in the outer trigonal prisms.
The hexagon which constitutes a truncated octahe-
dron is parallel to the bottom of a trigonal prism and
is half the height of the trigonal prisms, as shown in
Fig. 6, which is projected along [111]). Li,VN, will
become 143m and its chemical formula will become
‘Li;N’, if 6 V(2) in 6(c) are replaced by 6 Li (anti-
fluorite). Building blocks (2, 2), —(2, 0) and truncated
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Table 14. Li,VN,, cubic, a=9-60 A, space group P43n

Experimental Calculated Building
Atomic coordinates coordinates Calculated block
position x y z x y z Loty m, my, my symbol n U Xo Yo Zo ad (A)
2 V(1) in 2(a) 0 0 0 0 0 0 0 0 1 11 (2,2) 6 U, 000 0-0000
6 V(2) in 6(c) F } 0 1 i 0 Truncated octahedron 0-0000
8N(3) in 8(e) 0-120 0120 0-120 0-125 0125 0-125 3 3 3 111 2,1 6 U, 000 0-0831
24 N(4)in 24(i)  } H i H H i 33 3 00 2 2,1 6 U, IR 0-0000
6Li(1) in 6(b) O } i 0 | ! 12 0 o 220 2,2 6 U, 1y 0-0000
6 Li(2) in 6(d) 4 0 1 1 0 i Truncated octahedron 0-0000
8Li(3) in 8(e) ) i H ! H i 6 6 6 00 0 —(2,0) 6 U, 00 0 0-0000
12 Li(4)in 12(f) i 0 0 1 0 0 6 0 0 110 -(2,0) 6 U, 000 0-0000
24 Li(5) in 24(7) . i 0 H H 0 6 6 0 31 2,2) 6 U, 000 0-0000

octahedra are ideal polyhedra. The APAD of (2, 1)
is 0-7. Accordingly, Li;VN, consists of almost ideal
building blocks.

4. Discussion

Up to now, we have described 12 c.c.p. crystals which
belong to four space groups, 143m, Fd3m, F43m and
P43n. The integers n of all the building blocks are
4,6,7,8,10, 11, 14, 18, 19, 22. We can conclude that
all these structures or their dominant parts can be
described by the building blocks in Table 2. The rest
of the atoms of these structures are located at the
centers of the tetrahedra or octahedra of these build-
ing blocks or at the center of a trigonal prism,
hexagonal prism, icosahedron, dodecahedron or a
big cavity formed by these building blocks. (111)-
twinning in c.c.p.-related structures changes the
orientation of a tetrahedron and an octahedron.
Second-order and third-order twinning changes their
orientation progressively. The building blocks
(2,0,1) and (1,1,1),(2,1,1) and (2,0,1, 1), (2,0, 1)
and (1,1,1,1),(2,0,1,1,1)and (2,0,1, 1, 1) etc. can
all form icosahedra and naturally there is an atom
located at the center and this atom is a component
part of these building blocks. But in most cases it is
a heterogeneous atom. Consequently, (111)-twinning
of a T, polyhedron creates a method of forming a
trigonal prism, hexagonal prism, icosahedron etc.
Such polyhedra, tetrahedra and octahedra can
together accommodate quite a range of heterogeneous
atom sizes and compound compositions. The same
space groups have the same assembly rule of building

0.1

° Li oV =xN

Fig. 6. Part of the structure of Li,VN,.

blocks which is independent of the size of a unit cell.
The structural difference between the smallest and
the biggest unit cell in the same space group lies only
in the size of building blocks. The structural descrip-
tion of a complicated c.c.p.-related crystal can be
simplified greatly if we use building blocks. There
exists a very close relationship between a group and
its subgroup, and c.c.p.-related structures belonging
to the space groups given in Table 1 can be described
with these methods.

The CSL model with X =3 is quite an accurate
model for a description of c.c.p.-related structures.
APAD’s of building blocks range from 0 to 8-6 for
12 crystals and the average APAD of all the building
blocks in this paper is 3-2, as shown in Table 15.

As mentioned in the introduction, there exists a
very close relationship between the CSL model for
structure description and unit-cell twinning. For
example, X =11, which is twinning of (113)
(Andersson & Hyde, 1974; Hyde, Andersson, Bakker,
Plug & O’Keeffe, 1978), can describe hundreds of
compounds. As a matter of fact, ¥ =3 can describe
not only h.c.p. and c.c.p. structures but also pen-
tagonal Frank-Kasper phases etc. X =5 is suitable
for describing some phases of tetragonal, orthorhom-
bic, monoclinic systems. The CSL model for structure
description is a rather general one. For instance, there
almost always exists a CSL among domains which
are related by a crystallographic operation such as
reflection, rotation, threefold and fourfold axes and
intergrowth etc. We shall demonstrate this in a series
of papers.

5. Concluding remarks

The CSL model with £ =3 used to describe c.c.p.
structures has the following advantages:

1. General. The structure of a c.c.p.-related crystal
can always be described with twin operations in a
unit cell. All the c.c.p.-related structures which we
have studied can be described with the CSL of X =3
and using the building blocks given in Table 2.

2. Quantitative structure description. In order to
describe some of these structures quantitatively, two
formulae were derived earlier, (2, 2, 2) and

(x,y,2)=m/4n (5.1)
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Table 15. Summary of results for c.c.p. structures

Lattice
Crystal Space constant Building block 1 Building block 2

Compound system group (A) symbol center n APAD symbol center n APAD
SiF, Cubic 1a3m 5-41 —(1,0,1) 000 4 57 -(1,0,1) [E3) 4 57
y-Brass CugZng Cubic 133m 8-878 —(1,0,1,1,1) 000 7 42 —(1,0,1,1,1) i 7 42
a-Mn Cubic 133m 889 -(2,1,2) 000 8 44 -(2,1,2) 14 8 44
[(Na.Ca);Nb,0OF] Cubic Fdim 10-40 -(1,0) 000 6 0 (1,1, 33 8 02~65
Fe,W,C Cubic Fd3m 11-087 (1, 1,1) 000 8 3.9 (1,2, 1231 10 26
Zunyite Cubic Faim 13-820 -(2,2,1) 000 11 2:2 (0,0) i34 1 0-0
Al V Cubic Fd3m 14:516 -(1,1,1) 000 n 35 @1 EEE] 1 35
Mg, Rh, Cubic Fa3m 20-110 (1,0,1,1,1) 000 14 84 (3,0,1) 1 14 5:0
Na,Tl Cubic Fa3m 24115 (2,0,1,1) 000 14 33 -(1,0,1,1,1) 1 14 42
Cu,Cd, Cubic Fa3m 25-871 -(2,0,1,1,1) 000 18 7-2 -(4,5,1) 1 2 12
Geyg Pyl Cubic Pa3n 10-507 _::g:: 000 4 :5 _::gi)) 3 4 ii
Li,VN, Cubic Pa3n 9-60 2,2 000 6 0-0 2,2) 231 6 00

Building block 3 Building block 4

[(Na.Ca),Nb,0,F] Cubic Fd3m 10-40 (1,0 I 6 ] -(1,1,1) i 8 0-2~65
Fe,W,C Cubic Fd3m 11-087 —(1,1,1) FEY) 8 39 -(1,2,1) i 10 26
Zunyite Cubic Fa3m 13-820 -(1,2,1) 13T} 1 12 21,1 313 i 24
Al vV Cubic Fd3m 14:516 (1,1,1) 14t 1 35 ~(2,1) 13 1 35
Mg, Rh, Cubic Fa3m 20110 -(1,1,1,1) i1 14 25 (1,0,1,1, 1) 13 14 29
Na, Tl Cubic Fa3m 24115 —(1,0,1,1,1) i 14 64 -2, iii 14 86
Cu,Cd, Cubic Fi3m 25-871 @ 1,1 i 22 1-4 -(2,0,1,1) i 19 69

by one of us (Andersson, 1980). However, (5.1) has
to be modified, because (a) the limit of integer m
was not given, and (b) xyz are not independent since
they are the three coordinates of one and the same
atom. (5.1) was thus an oversimplification and (2.2.6)
and (2.2.7) have solved these problems. These for-
mulae give the true description of the coordinates of
atoms in a crystal. Finally we can derive the accuracy
of a description of a crystal structure.

3. Symbolism for a building block. Earlier building
blocks were given special names like pyrochlore unit,
Keggin unit, stella quadrangula, truncated tetra-
hedron, Friauf polyhedron etc. The relationship
among these building blocks was not obvious. We
can now denote them in terms of two, three, four or
five integers, ie (K, L), (K, L, P), (K,L, P,Q) or
(K, L, P,Q, S) which can be used in the formulae
(2.2.6) and (2.2.7). There is a common relation of
2 =3 among them.

4. The convenience of building a model of a c.c.p.
structure. The shortest interatomic distances and their
average value can be calculated from the coordinates
of a structure. Then n can be calculated by (2.2.2).
The assembly rule for building blocks in a c.c.p.
structure is determined by its space group. The build-
ing blocks of a structure can easily be found in terms
of n and space group. The relationship among these
building blocks can be found easily by means of
shared atoms. For example, Al,,V is of space group
Fd3m and consists of two kinds of building blocks,
(2,1) and (1,1, 1), which share three atoms on the
triangle surface of (2, 1) and on the triangle surface
of the outer octahedron of (1, 1, 1). Putting these two
surfaces together, the model of Al,,V can be built.
This is easily programmed, and the structure descrip-
tion can be made with computer graphics.

5. The possibility of solving an unknown complex
and c.c.p.-related structure. Given n and the space
group of a structure, various building blocks can be
derived. The distance between two building blocks
must be n/2 or n/4, and building blocks must share
atoms. This algebraic method seems to us to be much
simpler and more straightforward than the stochastic,
geometrical method used by Samson (1964). This we
hope to demonstrate in a forthcoming paper.
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Hyde, Physics Department, Monash, Melbourne.
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Abstract

A new description of the ordered part of the crystal
structure of NaCd, is proposed. A framework of
cadmium Friauf polyhedra, related to but different
from that of Cu,Cd;, interpenetrates a partially disor-
dered sodium-cadmium structure. Using matrix
algebra developed for the coincidence site lattice
theory, atomic coordinates can be calculated which
are very close to those experimentally determined.

Introduction

The crystal structure of NaCd, (8-Mg,Al, is isostruc-
tural) is cubic, Fd3m, with a = 30-56 A, and approxi-
mately 1192 atoms in the unit cell, as determined by
Samson (Samson, 1962, 1965). According to Samson’s
description, the unit cube contains 672 icosahedra,
252 Friauf polyhedra, and 244 miscellaneous, more
or less irregular polyhedra.

Derivation and description

From Samson’s data for 8-Mg,Al, the structure was
plotted with cubic axes. Two different building blocks
consisting of Friauf polyhedra were derived, and
these could be joined together in the space group
Fd3m. The derived structure contained the cadmium
atoms numbered 1, 2, 3, 4, 5 and 6 (from the structure
of NaCd,) and is shown in Fig. 2. These building
biocks are red, yellow and green, the red and yellow
building blocks being identical units, but in opposite
orientations.

In a parallel article (Yang & Andersson, 1987), we
give an exact and general description of the cubic

* On leave from Institute of Metal Research, Academia Sinica,
Wenhua Road, Shenyang, China.

0108-7681/87/010014-04$01.50

structures that contain building blocks, using matrix
algebra and symmetry considerations. It was also
pointed out that this method could be used for a
direct determination of complex structures. It was
decided to carry out a test on NaCd,, as Samson’s
structure determination of this compound had resul-
ted in a relatively high R factor, viz. 0-17. Crystals
of NaCd, were prepared in silica tubes. Complete
data were collected using a Nicolet diffractometer
with Mo Ka radiation, from a suitable crystal sealed
in a glass capillary.
From the general formula

a=n(2"%)d/3

as derived by Yang & Andersson (1987), d is the
shortest interatomic distance and was determined
from the three-dimensional Patterson synthesis to be
0-09744 A; n=21-77=22. The space group of NaCd,
is Fd3m, which is composed of 16 building blocks
of two types.

The nearest two building blocks are those located
at (000) and (11) respectively. We assume that the
building block around (000) is (KLPQS); then that
around (1i1) must be —(KLPQS). The interface
between these two building blocks is the (111) lattice
plane through (333). Let (xyz) be the coordinates of
the atoms in the interface. Then

(xa+yb+c)(atb+ec)=x+y+z=3/8

and
Lttt = 4n(x+y+ z)=33.

The only building block in Table 2 of our parallel
paper (Yang & Andersson, 1987) which has ¢, + 1, +
t; =33, ie coordinates (23111) or (111111), is
(4,3,1). The interface of two building blocks, as
shown in Fig. 1, consists of these two independent
coordinates according to symmetry operations.
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